Skip to main content

2023 | OriginalPaper | Buchkapitel

Predicting the Extended Life Cycle Energy Consumption of Building Based on Deep Learning LSTM Model

verfasst von : Lei Liu, Vivian W. Y. Tam, Khoa N. Le, Laura Almeida

Erschienen in: Proceedings of the 27th International Symposium on Advancement of Construction Management and Real Estate

Verlag: Springer Nature Singapore

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Sustainable developments have been one of the main social forces worldwide, especially in the building sector. As the current biggest energy consumption industry of 35%, it is urgent to solve severe energy issues through advanced energy-saving technologies. Energy consumption prediction, as one of the important building energy management tools, can evaluate energy conservation policies and services timely. Unfortunately, there is still a significant difference between actual and predicted values. A consensus about the life cycle energy boundaries for buildings is being challenged. Some studies believed that the mobile energy related to building location can be accounted, except for traditional embodied and operational energies. Besides, deep learning was regarded as a method better than other simulation models in time series forecasts. To fill the gap between actual and predicted energy consumption values, this paper proposes to extend the life cycle energy boundaries of buildings and choose the Long Short-term memory model (LSTM)) to predict the building energy consumption in China from 2020 to 2029, which is based on the historical data collected from 2005 to 2019. Results show that there was a remarkable increase in the past 15 years for the total life cycle energy consumption of buildings, but afterwards it will fluctuate at around 1,050 Mtce because of potential influencing factors such as recyclable concrete and prefabricated process applied into an increasing number of newly built buildings. Mobile energy consumption accounted for 24% share of total energy consumption, but it is expected to fall significantly in the next decade. Overall, this study provides a pathway to help reduce building energy consumption prediction errors.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat British Petroleum. Statistical Review of World Energy 2020 (2020) British Petroleum. Statistical Review of World Energy 2020 (2020)
3.
Zurück zum Zitat Karijadi, I., Chou, S.-Y.: A hybrid RF-LSTM based on CEEMDAN for improving the accuracy of building energy consumption prediction. Energy Build. 259, 111908 (2022)CrossRef Karijadi, I., Chou, S.-Y.: A hybrid RF-LSTM based on CEEMDAN for improving the accuracy of building energy consumption prediction. Energy Build. 259, 111908 (2022)CrossRef
4.
Zurück zum Zitat Khalil, M., et al.: Machine learning, deep learning and statistical analysis for forecasting building energy consumption—a systematic review. Eng. Appl. Artif. Intell. 115, 105287 (2022)CrossRef Khalil, M., et al.: Machine learning, deep learning and statistical analysis for forecasting building energy consumption—a systematic review. Eng. Appl. Artif. Intell. 115, 105287 (2022)CrossRef
5.
Zurück zum Zitat Du, Q., et al.: The energy rebound effect of residential buildings: evidence from urban and rural areas in China. Energy Policy 153, 112235 (2021)CrossRef Du, Q., et al.: The energy rebound effect of residential buildings: evidence from urban and rural areas in China. Energy Policy 153, 112235 (2021)CrossRef
6.
Zurück zum Zitat Li, Y., et al.: EA-LSTM: evolutionary attention-based LSTM for time series prediction. Knowl.-Based Syst. 181, 104785 (2019)CrossRef Li, Y., et al.: EA-LSTM: evolutionary attention-based LSTM for time series prediction. Knowl.-Based Syst. 181, 104785 (2019)CrossRef
7.
Zurück zum Zitat Dara, S., Tumma, P.: Feature extraction by using deep learning: a survey. In: 2018 Second International Conference on Electronics, Communication and Aerospace Technology (ICECA) (2018) Dara, S., Tumma, P.: Feature extraction by using deep learning: a survey. In: 2018 Second International Conference on Electronics, Communication and Aerospace Technology (ICECA) (2018)
8.
Zurück zum Zitat Tam, V.W., Liu, L., Le, K.N.: Modelling and quantitation of embodied, operational and mobile energies of buildings: a holistic review from 2012 to 2021. Eng. Constr. Archit. Manage. (2022) Tam, V.W., Liu, L., Le, K.N.: Modelling and quantitation of embodied, operational and mobile energies of buildings: a holistic review from 2012 to 2021. Eng. Constr. Archit. Manage. (2022)
9.
Zurück zum Zitat Fenner, A.E., et al.: Embodied, operation, and commuting emissions: a case study comparing the carbon hotspots of an educational building. J. Clean. Prod. 268, 122081 (2020)CrossRef Fenner, A.E., et al.: Embodied, operation, and commuting emissions: a case study comparing the carbon hotspots of an educational building. J. Clean. Prod. 268, 122081 (2020)CrossRef
10.
Zurück zum Zitat Yu, M., Wiedmann, T., Langdon, S.: Assessing the greenhouse gas mitigation potential of urban precincts with hybrid life cycle assessment. J. Clean. Prod. 279, 123731 (2021)CrossRef Yu, M., Wiedmann, T., Langdon, S.: Assessing the greenhouse gas mitigation potential of urban precincts with hybrid life cycle assessment. J. Clean. Prod. 279, 123731 (2021)CrossRef
11.
Zurück zum Zitat Al-Shargabi, A.A., et al.: Buildings’ energy consumption prediction models based on buildings’ characteristics: Research trends, taxonomy, and performance measures. J. Build. Eng. 54, 104577 (2022)CrossRef Al-Shargabi, A.A., et al.: Buildings’ energy consumption prediction models based on buildings’ characteristics: Research trends, taxonomy, and performance measures. J. Build. Eng. 54, 104577 (2022)CrossRef
12.
Zurück zum Zitat Jing, W., et al.: A prediction model for building energy consumption in a shopping mall based on Chaos theory. Energy Rep. 8, 5305–5312 (2022)CrossRef Jing, W., et al.: A prediction model for building energy consumption in a shopping mall based on Chaos theory. Energy Rep. 8, 5305–5312 (2022)CrossRef
13.
Zurück zum Zitat Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:​1409.​0473 (2014)
14.
Zurück zum Zitat China’s Ministry of Housing and Urban-Rural Development. Standard for energy consumption of building GB/T51161-2016 (2016) China’s Ministry of Housing and Urban-Rural Development. Standard for energy consumption of building GB/T51161-2016 (2016)
16.
Zurück zum Zitat CABEE. China building energy consumption annual report 2020. J. BEE 49(2) (2021) CABEE. China building energy consumption annual report 2020. J. BEE 49(2) (2021)
17.
Zurück zum Zitat CABEE. China Building Energy Consumption Annual Report 2019. Industry 7, 30–39 (2019) CABEE. China Building Energy Consumption Annual Report 2019. Industry 7, 30–39 (2019)
18.
Zurück zum Zitat CABEE. China Building Energy Consumption Annual Report 2018. Industry 2, 26–31 (2018) CABEE. China Building Energy Consumption Annual Report 2018. Industry 2, 26–31 (2018)
20.
Zurück zum Zitat CABEE. China Building Energy Consumption Annual Report 2016 (2016) CABEE. China Building Energy Consumption Annual Report 2016 (2016)
21.
Zurück zum Zitat THUBERC. China building energy efficiency annual development research report 2020. China Architecture & Building Press, China (2020) THUBERC. China building energy efficiency annual development research report 2020. China Architecture & Building Press, China (2020)
22.
Zurück zum Zitat Dixit, M.K.: Life cycle recurrent embodied energy calculation of buildings: a review. J. Clean. Prod. 209, 731–754 (2019)CrossRef Dixit, M.K.: Life cycle recurrent embodied energy calculation of buildings: a review. J. Clean. Prod. 209, 731–754 (2019)CrossRef
23.
Zurück zum Zitat Zhang, Y., et al.: China’s energy consumption in the building sector: a life cycle approach. Energy Build. 94, 240–251 (2015)CrossRef Zhang, Y., et al.: China’s energy consumption in the building sector: a life cycle approach. Energy Build. 94, 240–251 (2015)CrossRef
24.
Zurück zum Zitat Geng, J., et al.: Quantification of the carbon emission of urban residential buildings: the case of the Greater Bay Area cities in China. Environ. Impact Assess. Rev. 95 (2022) Geng, J., et al.: Quantification of the carbon emission of urban residential buildings: the case of the Greater Bay Area cities in China. Environ. Impact Assess. Rev. 95 (2022)
25.
Zurück zum Zitat National Bureau of Statistics of China. China statistical yearbook. CHINA: China Statistics Press (2005–2019) National Bureau of Statistics of China. China statistical yearbook. CHINA: China Statistics Press (2005–2019)
26.
Zurück zum Zitat Pääkkönen, A., et al.: The potential of biomethane in replacing fossil fuels in heavy transport—a case study on Finland. Sustainability 11(17) (2019) Pääkkönen, A., et al.: The potential of biomethane in replacing fossil fuels in heavy transport—a case study on Finland. Sustainability 11(17) (2019)
27.
Zurück zum Zitat National Bureau of Statistics. National data (private vehicle ownership). China (2005–2019) National Bureau of Statistics. National data (private vehicle ownership). China (2005–2019)
Metadaten
Titel
Predicting the Extended Life Cycle Energy Consumption of Building Based on Deep Learning LSTM Model
verfasst von
Lei Liu
Vivian W. Y. Tam
Khoa N. Le
Laura Almeida
Copyright-Jahr
2023
Verlag
Springer Nature Singapore
DOI
https://doi.org/10.1007/978-981-99-3626-7_135