Skip to main content
Erschienen in:

01.08.2024 | Original Paper

Predicting the performance of a functional ecological substrate via a generative model based on an orthogonal experiment

verfasst von: Guoliang Lin, Pengpeng Jiang, Bowen Cui, Aoxiang Lin, Wanxi Jiang, Xiaoyi Zhang, Minyi Liu

Erschienen in: Bulletin of Engineering Geology and the Environment | Ausgabe 8/2024

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Ecological slope protection plays a crucial role in increasing slope stability and preventing landslide disasters. The effectiveness of ecological slope protection is influenced by the ecological substrate used. In this study, the impact of materials and physical properties on the performance of ecological substrates based on red soil was investigated. Raw materials such as red soil, organic fertilizer, cement, sawdust, and ferrous sulfate were utilized for the ecological substrate, with Cynodon dactylon selected as the slope-protection plant. Orthogonal experiments L25(53) with three factors and five levels were conducted to analyze the growth status of Cynodon dactylon, shear strength, and degree of disintegration after dry–wet cycles. The study examined the interrelationships among multiple factors for ecological substrates using Pearson correlation and statistical significance tests. Range analysis was applied to determine the optimal formula. Furthermore, an ecological substrate neural network (ESNN) model based on a variational autoencoder (VAE) algorithm was initially designed to verify the optimal formula of ecological substrates and predict the performance of experiment arrays generated by VAE. The research findings indicated that the optimal formula obtained through ESNN model closely aligned with that obtained by range analysis. The excellent prediction performance of ESNN model was confirmed by the field experiments with random level values assigned to three factors. Therefore, the ESNN model can objectively evaluate orthogonal experiments' performance and provide property predictions for plant growth and slope stability for on-site construction conditions. This research provides a design method suitable for road ecological slope protection under red soil conditions.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Literatur
Zurück zum Zitat GB/T 50123 (2019) Standard for geotechnical testing method. National Standards of the People's Republic of China GB/T 50123 (2019) Standard for geotechnical testing method. National Standards of the People's Republic of China
Zurück zum Zitat LY/T 1215 (1999) Determination of forest soil water-physical properties. Forestry Industry Standards of the People's Republic of China LY/T 1215 (1999) Determination of forest soil water-physical properties. Forestry Industry Standards of the People's Republic of China
Metadaten
Titel
Predicting the performance of a functional ecological substrate via a generative model based on an orthogonal experiment
verfasst von
Guoliang Lin
Pengpeng Jiang
Bowen Cui
Aoxiang Lin
Wanxi Jiang
Xiaoyi Zhang
Minyi Liu
Publikationsdatum
01.08.2024
Verlag
Springer Berlin Heidelberg
Erschienen in
Bulletin of Engineering Geology and the Environment / Ausgabe 8/2024
Print ISSN: 1435-9529
Elektronische ISSN: 1435-9537
DOI
https://doi.org/10.1007/s10064-024-03798-4