Skip to main content
main-content

Tipp

Weitere Artikel dieser Ausgabe durch Wischen aufrufen

30.09.2019 | 5th World Congress on Integrated Computational Materials Engineering | Ausgabe 12/2019

Metallurgical and Materials Transactions A 12/2019

Predicting Twin Nucleation in a Polycrystalline Mg Alloy Using Machine Learning Methods

Zeitschrift:
Metallurgical and Materials Transactions A > Ausgabe 12/2019
Autoren:
Zhounuo Tong, Leyun Wang, Gaoming Zhu, Xiaoqin Zeng
Wichtige Hinweise
Manuscript submitted June 22, 2019.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Abstract

Twinning is an important deformation mechanism for Mg and other hexagonal metals. While twin nucleation is known to depend on the size and crystal orientation of the parent grain, so far there is no satisfactory criterion to predict twin nucleation in a polycrystalline Mg alloy prior to its deformation. In this work, machine learning is employed to tackle this problem. From a single-phase, polycrystalline Mg-0.47 wt pct Ca extruded alloy, three micro-tensile specimens, E-0, E-45, and E-90, were fabricated with their tensile axis being 0, 45, and 90 deg from the extrusion direction. Each specimen was deformed by 4 pct tensile strain in a scanning electron microscope. Six hundred thirty-six grains from E-0, 572 grains from E-45, and 840 grains from E-90 were characterized by electron backscattered diffraction (EBSD) before and after deformation. Twin nucleation was identified in 27, 150, and 220 grains in E-0, E-45, and E-90, respectively. Eighteen attributes that can influence twin nucleation, such as grain diameter, c-axis direction, and Schmid factors, were computed for each grain. Five machine learning algorithms, including decision tree, tree ensemble (XGBoost), artificial neural network (ANN), support vector machine (SVM), and naïve Bayes, were used to build models to predict twin nucleation according to a grain’s 18 attribute values, with E-45 as the training set and the other two specimens as the test sets. The ANN and SVM models show the best performance, both achieving ~ 87 pct prediction accuracy for specimens E-45 and E-90. None of the models perform well for E-0 because of the imbalanced class distribution in this specimen. The unpredicted twin nucleation events in E-90 mostly originate from triple junctions or twin–twin transmission at grain boundaries.

Bitte loggen Sie sich ein, um Zugang zu diesem Inhalt zu erhalten

Sie möchten Zugang zu diesem Inhalt erhalten? Dann informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 69.000 Bücher
  • über 500 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Umwelt
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Testen Sie jetzt 30 Tage kostenlos.

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 50.000 Bücher
  • über 380 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Umwelt
  • Maschinenbau + Werkstoffe




Testen Sie jetzt 30 Tage kostenlos.

Literatur
Über diesen Artikel

Weitere Artikel der Ausgabe 12/2019

Metallurgical and Materials Transactions A 12/2019 Zur Ausgabe

Premium Partner

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen. 

    Bildnachweise