Skip to main content
Erschienen in: Environmental Earth Sciences 15/2017

01.08.2017 | Original Article

Prediction and analysis of the stimulated reservoir volume for shale gas reservoirs based on rock failure mechanism

verfasst von: Yongquan Hu, Zhiqiang Li, Jinzhou Zhao, Zhengwu Tao, Pan Gao

Erschienen in: Environmental Earth Sciences | Ausgabe 15/2017

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The ultra-low-permeability shale gas reservoir has a lot of well-developed natural fractures. It has been proven that hydraulic fracture growth pattern is usually a complex network fracture rather than conventional single planar fractures by micro-seismic monitoring, which can be explained as the shear and tensile failure of natural fractures or creation of new cracks due to the increase in reservoir pore pressure caused by fluid injection during the process of hydraulic fracturing. In order to simulate the network fracture growth, a mathematical model was established based on full tensor permeability, continuum method and fluid mass conservation equation. Firstly, the governing equation of fluid diffusivity based on permeability tensor was solved to obtain the reservoir pressure distribution. Then Mohr–Coulomb shear failure criterion and tensile failure criterion were used to decide whether the rock failed or not in any block on the basis of the calculated reservoir pressure. The grid-block permeability was modified according to the change of fracture aperture once any type of rock failure criterion was met within a grid block. Finally, the stimulated reservoir volume (SRV) zone was represented by an enhancement permeability zone. After calibrating the numerical solution of the model with the field micro-seismic information, a sensitivity study was performed to analyze the effects of some factors including initial reservoir pressure, injection fluid volume, natural fracture azimuth angle and horizontal stress difference on the SRV (shape, size, bandwidth and length). The results show that the SRV size increases with the increasing initial pore reservoir and injection fluid volume, but decreases with the increase in the horizontal principal stress difference and natural fracture azimuth angle. The SRV shape is always similar for different initial pore reservoir and injection fluid volume. The SRV is observed to become shorter in length and wider in bandwidth with the decrease in natural fracture azimuth angle and horizontal principal stress difference.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
Zurück zum Zitat Cipolla CL (2009) Modeling production and evaluating fracture performance in unconventional gas reservoirs. J Pet Technol 61(09):84–90CrossRef Cipolla CL (2009) Modeling production and evaluating fracture performance in unconventional gas reservoirs. J Pet Technol 61(09):84–90CrossRef
Zurück zum Zitat Fanchi JR (2008) Directional permeability. SPE Reserv Eval Eng 11(03):565–568CrossRef Fanchi JR (2008) Directional permeability. SPE Reserv Eval Eng 11(03):565–568CrossRef
Zurück zum Zitat Fredd CN, McConnell SB, Boney CL et al (2001) Experimental study of fracture conductivity for water-fracturing and conventional fracturing applications. SPE J 6(03):288–298CrossRef Fredd CN, McConnell SB, Boney CL et al (2001) Experimental study of fracture conductivity for water-fracturing and conventional fracturing applications. SPE J 6(03):288–298CrossRef
Zurück zum Zitat Ge J, Ghassemi A (2012) Stimulated reservoir volume by hydraulic fracturing in naturally fractured shale gas reservoirs. In: 46th US rock mechanics/geomechanics symposium. American Rock Mechanics Association, 24–27 June, Chicago Ge J, Ghassemi A (2012) Stimulated reservoir volume by hydraulic fracturing in naturally fractured shale gas reservoirs. In: 46th US rock mechanics/geomechanics symposium. American Rock Mechanics Association, 24–27 June, Chicago
Zurück zum Zitat Ghassemi A, Zhou XX, Rawal C (2013) A three-dimensional poroelastic analysis of rock failure around a hydraulic fracture. J Pet Sci Eng 108:118–127CrossRef Ghassemi A, Zhou XX, Rawal C (2013) A three-dimensional poroelastic analysis of rock failure around a hydraulic fracture. J Pet Sci Eng 108:118–127CrossRef
Zurück zum Zitat Guo J, Liu Y (2014a) Opening of natural fracture and its effect on leakoff behavior in fractured gas reservoirs. J Nat Gas Sci Eng 18:324–328CrossRef Guo J, Liu Y (2014a) Opening of natural fracture and its effect on leakoff behavior in fractured gas reservoirs. J Nat Gas Sci Eng 18:324–328CrossRef
Zurück zum Zitat Guo J, Liu Y (2014b) A comprehensive model for simulating fracturing fluid leakoff in natural fractures. J Nat Gas Sci Eng 21:977–985CrossRef Guo J, Liu Y (2014b) A comprehensive model for simulating fracturing fluid leakoff in natural fractures. J Nat Gas Sci Eng 21:977–985CrossRef
Zurück zum Zitat Hossain MM, Rahman MK, Rahman SS (2002) A shear dilation stimulation model for production enhancement from naturally fractured reservoirs. SPE J 7(02):183–195CrossRef Hossain MM, Rahman MK, Rahman SS (2002) A shear dilation stimulation model for production enhancement from naturally fractured reservoirs. SPE J 7(02):183–195CrossRef
Zurück zum Zitat Hu YQ, Li ZQ, Zhao JZ et al (2016) Optimization of hydraulic fracture-network parameters based on production simulation in shale gas reservoirs. J Eng Res 4(04):159–180 Hu YQ, Li ZQ, Zhao JZ et al (2016) Optimization of hydraulic fracture-network parameters based on production simulation in shale gas reservoirs. J Eng Res 4(04):159–180
Zurück zum Zitat Ji LJ, Settari A, Sullivan RB (2009) A novel hydraulic fracturing model fully coupled with geomechanics and reservoir simulation. SPE J 14(03):423–430CrossRef Ji LJ, Settari A, Sullivan RB (2009) A novel hydraulic fracturing model fully coupled with geomechanics and reservoir simulation. SPE J 14(03):423–430CrossRef
Zurück zum Zitat Maulianda BT, Hareland G, Chen S (2014) Geomechanical consideration in stimulated reservoir volume dimension models prediction during multi-stage hydraulic fractures in horizontal Wells–Glauconite tight formation in Hoadley field. In: 48th US rock mechanics/geomechanics symposium. American Rock Mechanics Association Maulianda BT, Hareland G, Chen S (2014) Geomechanical consideration in stimulated reservoir volume dimension models prediction during multi-stage hydraulic fractures in horizontal Wells–Glauconite tight formation in Hoadley field. In: 48th US rock mechanics/geomechanics symposium. American Rock Mechanics Association
Zurück zum Zitat Mayerhofer MJ, Lolon EP, Warpinski NR et al (2010) What is stimulated reservoir volume (SRV)? SPE Prod Oper 15(4):473–485 Mayerhofer MJ, Lolon EP, Warpinski NR et al (2010) What is stimulated reservoir volume (SRV)? SPE Prod Oper 15(4):473–485
Zurück zum Zitat Nassir M, Settari A, Wan RG (2012) Prediction and optimization of fracturing in tight gas and shale using a coupled geomechanical model of combined tensile and shear fracturing. In: Paper SPE-152200-MS presented at the SPE hydraulic fracturing technology conference, 6–8 February, The Woodlands Nassir M, Settari A, Wan RG (2012) Prediction and optimization of fracturing in tight gas and shale using a coupled geomechanical model of combined tensile and shear fracturing. In: Paper SPE-152200-MS presented at the SPE hydraulic fracturing technology conference, 6–8 February, The Woodlands
Zurück zum Zitat Nassir M, Settari A, Wan RG (2014) Prediction of stimulated reservoir volume and optimization of fracturing in tight gas and shale with a fully elasto-plastic coupled geomechanical model. SPE J 19(05):771–785CrossRef Nassir M, Settari A, Wan RG (2014) Prediction of stimulated reservoir volume and optimization of fracturing in tight gas and shale with a fully elasto-plastic coupled geomechanical model. SPE J 19(05):771–785CrossRef
Zurück zum Zitat Palmer ID, Moschovidis ZA, Cameron JR (2007) Modeling shear failure and stimulation of the Barnett shale after hydraulic fracturing. In: Paper SPE-106113-MS presented at the hydraulic fracturing technology conference, 29–31 January, College Station Palmer ID, Moschovidis ZA, Cameron JR (2007) Modeling shear failure and stimulation of the Barnett shale after hydraulic fracturing. In: Paper SPE-106113-MS presented at the hydraulic fracturing technology conference, 29–31 January, College Station
Zurück zum Zitat Palmer I, Cameron J, Moschovidis Z et al (2009) Natural fractures influence shear stimulation direction. Oil Gas J 107(12):37–43 Palmer I, Cameron J, Moschovidis Z et al (2009) Natural fractures influence shear stimulation direction. Oil Gas J 107(12):37–43
Zurück zum Zitat Palmer ID, Moschovidis ZA, Schaefer A (2013) Microseismic clouds: modeling and implications. SPE Prod Oper 28(02):181–190CrossRef Palmer ID, Moschovidis ZA, Schaefer A (2013) Microseismic clouds: modeling and implications. SPE Prod Oper 28(02):181–190CrossRef
Zurück zum Zitat Potluri NK, Zhu D, Hill AD (2005) The effect of natural fractures on hydraulic fracture propagation. In: Paper SPE-94568-MS presented at SPE European formation damage conference, 25–27 May, Sheveningen Potluri NK, Zhu D, Hill AD (2005) The effect of natural fractures on hydraulic fracture propagation. In: Paper SPE-94568-MS presented at SPE European formation damage conference, 25–27 May, Sheveningen
Zurück zum Zitat Ren L, Lin R, Zhao J et al (2015) Simultaneous hydraulic fracturing of ultra-low permeability sandstone reservoirs in China: mechanism and its field test. J Cent South Univ 22:1427–1436CrossRef Ren L, Lin R, Zhao J et al (2015) Simultaneous hydraulic fracturing of ultra-low permeability sandstone reservoirs in China: mechanism and its field test. J Cent South Univ 22:1427–1436CrossRef
Zurück zum Zitat Ren L, Su Y, Zhan S et al (2016) Modeling and simulation of complex fracture network propagation with SRV fracturing in unconventional shale reservoirs. J Nat Gas Sci Eng 28:132–141CrossRef Ren L, Su Y, Zhan S et al (2016) Modeling and simulation of complex fracture network propagation with SRV fracturing in unconventional shale reservoirs. J Nat Gas Sci Eng 28:132–141CrossRef
Zurück zum Zitat Shahid ASA, Wassing BBT, Fokker PA et al (2015) Natural-fracture reactivation in shale gas reservoir and resulting microseismicity. J Can Pet Technol 54(06):450–459CrossRef Shahid ASA, Wassing BBT, Fokker PA et al (2015) Natural-fracture reactivation in shale gas reservoir and resulting microseismicity. J Can Pet Technol 54(06):450–459CrossRef
Zurück zum Zitat Sun RZ (2016) The research on the calculation method of stimulated reservoir volume for shale gas reservoir in Fuling area of China. Master Degree Thesis, Southwest Petroleum University Sun RZ (2016) The research on the calculation method of stimulated reservoir volume for shale gas reservoir in Fuling area of China. Master Degree Thesis, Southwest Petroleum University
Zurück zum Zitat Wang Y, Li X, Zhou RQ et al (2016) Numerical evaluation of the shear stimulation effect in naturally fractured formations. Sci China Earth Sci 59(2):371–383CrossRef Wang Y, Li X, Zhou RQ et al (2016) Numerical evaluation of the shear stimulation effect in naturally fractured formations. Sci China Earth Sci 59(2):371–383CrossRef
Zurück zum Zitat Warpinski NR, Wolhart SL, Wright CA (2001) Analysis and prediction of microseismicity induced by hydraulic fracturing. In: Paper SPE 71649-MS presented at the SPE annual technical conference and exhibition, 30 September–3 October, New Orleans Warpinski NR, Wolhart SL, Wright CA (2001) Analysis and prediction of microseismicity induced by hydraulic fracturing. In: Paper SPE 71649-MS presented at the SPE annual technical conference and exhibition, 30 September–3 October, New Orleans
Zurück zum Zitat Weng X, Kresse O, Cohen CE et al (2011) Modeling of hydraulic-fracture-network propagation in a naturally fractured formation. SPE Prod Oper 26(04):368–380CrossRef Weng X, Kresse O, Cohen CE et al (2011) Modeling of hydraulic-fracture-network propagation in a naturally fractured formation. SPE Prod Oper 26(04):368–380CrossRef
Zurück zum Zitat Xu W, Thiercelin MJ, Walton IC (2009) Characterization of hydraulically-induced shale fracture network using an analytical/semi-analytical model. In: Paper SPE 124697-MS presented at the SPE annual technical conference and exhibition, 4–7 October, New Orleans Xu W, Thiercelin MJ, Walton IC (2009) Characterization of hydraulically-induced shale fracture network using an analytical/semi-analytical model. In: Paper SPE 124697-MS presented at the SPE annual technical conference and exhibition, 4–7 October, New Orleans
Zurück zum Zitat Xu W, Thiercelin M, Ganguly U et al (2010) Wiremesh: a novel shale fracturing simulator. In: Paper SPE 132218 presented at CPS/SPE international oil and gas conference and exhibitiion, Beijing, 8–10 June Xu W, Thiercelin M, Ganguly U et al (2010) Wiremesh: a novel shale fracturing simulator. In: Paper SPE 132218 presented at CPS/SPE international oil and gas conference and exhibitiion, Beijing, 8–10 June
Zurück zum Zitat Yu G, Aguilera R (2012) 3D analytical modeling of hydraulic fracturing stimulated reservoir volume. In: Paper SPE-153468 presented at SPE Latin America and Caribbean petroleum engineering conference, 16–18 April, Mexico City Yu G, Aguilera R (2012) 3D analytical modeling of hydraulic fracturing stimulated reservoir volume. In: Paper SPE-153468 presented at SPE Latin America and Caribbean petroleum engineering conference, 16–18 April, Mexico City
Zurück zum Zitat Zhang J, Kamenov A, Zhu D et al (2013) Laboratory measurement of hydraulic fracture conductivities in the Barnett shale. In: Paper IPTC-16444-MS presented at the international petroleum technology conference, 26–28 March, Beijing Zhang J, Kamenov A, Zhu D et al (2013) Laboratory measurement of hydraulic fracture conductivities in the Barnett shale. In: Paper IPTC-16444-MS presented at the international petroleum technology conference, 26–28 March, Beijing
Zurück zum Zitat Zou Y, Zhang S, Ma X et al (2016) Numerical investigation of hydraulic fracture network propagation in naturally fractured shale formations. J Struct Geol 84:1–13CrossRef Zou Y, Zhang S, Ma X et al (2016) Numerical investigation of hydraulic fracture network propagation in naturally fractured shale formations. J Struct Geol 84:1–13CrossRef
Metadaten
Titel
Prediction and analysis of the stimulated reservoir volume for shale gas reservoirs based on rock failure mechanism
verfasst von
Yongquan Hu
Zhiqiang Li
Jinzhou Zhao
Zhengwu Tao
Pan Gao
Publikationsdatum
01.08.2017
Verlag
Springer Berlin Heidelberg
Erschienen in
Environmental Earth Sciences / Ausgabe 15/2017
Print ISSN: 1866-6280
Elektronische ISSN: 1866-6299
DOI
https://doi.org/10.1007/s12665-017-6830-3

Weitere Artikel der Ausgabe 15/2017

Environmental Earth Sciences 15/2017 Zur Ausgabe