Skip to main content
Erschienen in: Lasers in Manufacturing and Materials Processing 1/2019

01.02.2019

Prediction and Control of Asymmetric Bead Shape in Laser-Arc Hybrid Fillet-Lap Joints in Sheet Metal Welds

verfasst von: Prashant Kochar, Abhay Sharma, Tetsuo Suga, Manbu Tanaka

Erschienen in: Lasers in Manufacturing and Materials Processing | Ausgabe 1/2019

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The shape and size of a weld bead - consisting of outer weld surface and inner fusion boundary - are important quality and strength attributes in sheet metal welds. The asymmetricity coupled with additional controlling parameters makes it challenging to predict the bead shape in laser-arc hybrid fillet-lap joints with use of lower order nonlinear analytical mathematical functions. An artificial neural network is designed to address the challenge, considering the welding speed, wire feed speed, voltage, current, and laser power as inputs. The experimentally obtained weld bead profiles are digitized in polar coordinates (r, θ) and thereby many input-output pairs are made available for training even with a limited number of experiments. An optimized neural network topology is presented with an assessment of reliability of simulation results. A rational approach for determining the number of coordinate points needed to accurately map the weld bead profile is an important contribution from the present investigation. The parametric study elucidates the effects of input parameters on geometry of the weld beads. The neural network exhibits the capability of capturing the process physics - demonstrated through the analysis of the weld dilution obtained from the simulation results. The welding speed and wire feed speed signifyingly affect the bead shape while the laser power has a minor impact. The laser, even though with less power, improves the weld dilution due to preheating of the base plate and stabilization of the welding arc.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Ruifeng, L., et al.: A comparative study of laser beam welding and laser–MIG hybrid welding of Ti–Al–Zr–Fe titanium alloy. Mater. Sci. Eng. A. 528(3), 1138–1142 (2011)CrossRef Ruifeng, L., et al.: A comparative study of laser beam welding and laser–MIG hybrid welding of Ti–Al–Zr–Fe titanium alloy. Mater. Sci. Eng. A. 528(3), 1138–1142 (2011)CrossRef
2.
Zurück zum Zitat Rayes, E., et al.: The influence of various hybrid welding parameters on bead geometry. Weld. J. 83(5), 147–153 (2004) Rayes, E., et al.: The influence of various hybrid welding parameters on bead geometry. Weld. J. 83(5), 147–153 (2004)
3.
Zurück zum Zitat Gao, M., Mei, S., Wang, Z., Li, X., Zeng, X.: Process and joint characterizations of laser–MIG hybrid welding of AZ31 magnesium alloy. J. Mater. Process. Technol. 212(6), 1338–1346 (2012)CrossRef Gao, M., Mei, S., Wang, Z., Li, X., Zeng, X.: Process and joint characterizations of laser–MIG hybrid welding of AZ31 magnesium alloy. J. Mater. Process. Technol. 212(6), 1338–1346 (2012)CrossRef
4.
Zurück zum Zitat Seiji, K.: et al. Laser welding and hybrid welding of aluminium alloys. Proceedings of the International Aluminium Conference INALCO: 11, 79:90 (2010) Seiji, K.: et al. Laser welding and hybrid welding of aluminium alloys. Proceedings of the International Aluminium Conference INALCO: 11, 79:90 (2010)
5.
Zurück zum Zitat Lin-Jie, Z., et al.: Single pass hybrid laser–MIG welding of 4-mm thick copper without preheating. Mater. Des. 74, 1–18 (2015)CrossRef Lin-Jie, Z., et al.: Single pass hybrid laser–MIG welding of 4-mm thick copper without preheating. Mater. Des. 74, 1–18 (2015)CrossRef
6.
Zurück zum Zitat Sun, S., et al.: Multiple nonlinear regression model of weld beadshape for high nitrogen steel by laser-arc hybrid welding. J. Mech. Eng. 51(8), 67–75 (2015)MathSciNetCrossRef Sun, S., et al.: Multiple nonlinear regression model of weld beadshape for high nitrogen steel by laser-arc hybrid welding. J. Mech. Eng. 51(8), 67–75 (2015)MathSciNetCrossRef
7.
Zurück zum Zitat Abhay, S., et al.: Mathematical model of bead profile in high deposition welds. J. Mater. Process. Technol. 220, 65–75 (2015)CrossRef Abhay, S., et al.: Mathematical model of bead profile in high deposition welds. J. Mater. Process. Technol. 220, 65–75 (2015)CrossRef
8.
Zurück zum Zitat Saurav, D., et al.: Modeling and optimization of features of bead geometry including percentage dilution in submerged arc welding using mixture of fresh flux and fused slag. Int. J. Adv. Manuf. Technol. 36(11–12), 1080–1090 (2008) Saurav, D., et al.: Modeling and optimization of features of bead geometry including percentage dilution in submerged arc welding using mixture of fresh flux and fused slag. Int. J. Adv. Manuf. Technol. 36(11–12), 1080–1090 (2008)
9.
Zurück zum Zitat Sanatan, C., et al.: Mathematical model of complex weld penetration profile: a case of square AC waveform arc welding. J. Manuf. Process. 30, 483–491 (2017)CrossRef Sanatan, C., et al.: Mathematical model of complex weld penetration profile: a case of square AC waveform arc welding. J. Manuf. Process. 30, 483–491 (2017)CrossRef
10.
Zurück zum Zitat Kumar, M.U., et al.: A semi-analytical nonlinear regression approach for weld profile prediction: a case of alternating current square waveform submerged arc welding of heat resistant steel. J. Manuf. Sci. Eng. 140(11), 1110–1113 (2018) Kumar, M.U., et al.: A semi-analytical nonlinear regression approach for weld profile prediction: a case of alternating current square waveform submerged arc welding of heat resistant steel. J. Manuf. Sci. Eng. 140(11), 1110–1113 (2018)
11.
Zurück zum Zitat Ridings, G.E., Thomson, R.C., Thewlis, G.: Prediction of multiwire submerged arc weld bead shape using neural network modelling. Sci. Technol. Weld. Join. 7(5), 265–279 (2002)CrossRef Ridings, G.E., Thomson, R.C., Thewlis, G.: Prediction of multiwire submerged arc weld bead shape using neural network modelling. Sci. Technol. Weld. Join. 7(5), 265–279 (2002)CrossRef
12.
Zurück zum Zitat Nagesh, D.S., Datta, G.L.: Prediction of weld bead geometry and penetration in shielded metal-arc welding using artificial neural networks. J. Mater. Process. Technol. 123(2), 303–312 (2002)CrossRef Nagesh, D.S., Datta, G.L.: Prediction of weld bead geometry and penetration in shielded metal-arc welding using artificial neural networks. J. Mater. Process. Technol. 123(2), 303–312 (2002)CrossRef
13.
Zurück zum Zitat Cook, G.E., Barnett, R.J., Andersen, K., Strauss, A.M.: Weld modeling and control using artificial neural networks. IEEE Trans. Ind. Appl. 31(6), 1484–1491 (1995)CrossRef Cook, G.E., Barnett, R.J., Andersen, K., Strauss, A.M.: Weld modeling and control using artificial neural networks. IEEE Trans. Ind. Appl. 31(6), 1484–1491 (1995)CrossRef
14.
Zurück zum Zitat Chowdhury, S., et al.: Part Build Orientation Optimization and Neural Network-Based Geometry Compensation for Additive Manufacturing Process. J. Manuf. Sci. Eng. 140(3), 031009 (2018)CrossRef Chowdhury, S., et al.: Part Build Orientation Optimization and Neural Network-Based Geometry Compensation for Additive Manufacturing Process. J. Manuf. Sci. Eng. 140(3), 031009 (2018)CrossRef
15.
Zurück zum Zitat Juan, Z., et al.: An adaptive-network-based fuzzy inference system for classification of welding defects. NDT E Int. 43(3), 191–199 (2010)MathSciNetCrossRef Juan, Z., et al.: An adaptive-network-based fuzzy inference system for classification of welding defects. NDT E Int. 43(3), 191–199 (2010)MathSciNetCrossRef
16.
Zurück zum Zitat Abhay, S., et al.: Artificial neural network modelling of deposition rate during twin-wire welding. Aust. Weld. J. 52, 39–48 (2007) Abhay, S., et al.: Artificial neural network modelling of deposition rate during twin-wire welding. Aust. Weld. J. 52, 39–48 (2007)
17.
Zurück zum Zitat Abhay, S.: A comparative study on mechanical properties of single-and twin-wire welded joints through multi-objective meta-heuristic optimisation. Int. J. Manuf. Res. 11(4), 374–393 (2016)CrossRef Abhay, S.: A comparative study on mechanical properties of single-and twin-wire welded joints through multi-objective meta-heuristic optimisation. Int. J. Manuf. Res. 11(4), 374–393 (2016)CrossRef
18.
Zurück zum Zitat Arpith, S., et al.: Prediction and optimization of weld bead geometry for electron beam welding of AISI 304 stainless steel. Int. J. Adv. Manuf. Technol. 89(1–4), 27–43 (2017) Arpith, S., et al.: Prediction and optimization of weld bead geometry for electron beam welding of AISI 304 stainless steel. Int. J. Adv. Manuf. Technol. 89(1–4), 27–43 (2017)
19.
Zurück zum Zitat Sukhomay, P., et al.: Artificial neural network modeling of weld joint strength prediction of a pulsed metal inert gas welding process using arc signals. J. Mater. Process. Technol. 202(1–3), 464–474 (2008) Sukhomay, P., et al.: Artificial neural network modeling of weld joint strength prediction of a pulsed metal inert gas welding process using arc signals. J. Mater. Process. Technol. 202(1–3), 464–474 (2008)
20.
Zurück zum Zitat Lakshminarayanan, A.K., Balasubramanian, V.: Comparison of RSM with ANN in predicting tensile strength of friction stir welded AA7039 aluminium alloy joints. Trans. Nonferrous Metals Soc. China. 19(1), 9–18 (2009)CrossRef Lakshminarayanan, A.K., Balasubramanian, V.: Comparison of RSM with ANN in predicting tensile strength of friction stir welded AA7039 aluminium alloy joints. Trans. Nonferrous Metals Soc. China. 19(1), 9–18 (2009)CrossRef
21.
Zurück zum Zitat Manikya, K.K., Srinivasa, R.P.: Prediction of bead geometry in pulsed GMA welding using back propagation neural network. J. Mater. Process. Technol. 200(1–3), 300–305 (2008)CrossRef Manikya, K.K., Srinivasa, R.P.: Prediction of bead geometry in pulsed GMA welding using back propagation neural network. J. Mater. Process. Technol. 200(1–3), 300–305 (2008)CrossRef
22.
Zurück zum Zitat Singh, A.K., Thorpe, G.R.: Simpson’s 1/3-rule of integration for unequal divisions of integration domain. J. Concr. Appl. Math. 1(3), 247–252 (2003)MathSciNetMATH Singh, A.K., Thorpe, G.R.: Simpson’s 1/3-rule of integration for unequal divisions of integration domain. J. Concr. Appl. Math. 1(3), 247–252 (2003)MathSciNetMATH
23.
Zurück zum Zitat Willmott, C.J., Kenji, M.: Advantages of the mean absolute error (MAE) over the root mean square error (RMSE) in assessing average model performance. Clim. Res. 30(1), 79–82 (2005)CrossRef Willmott, C.J., Kenji, M.: Advantages of the mean absolute error (MAE) over the root mean square error (RMSE) in assessing average model performance. Clim. Res. 30(1), 79–82 (2005)CrossRef
24.
Zurück zum Zitat Klas, N, et al. Parameter influence in CO2-laser/MIG hybrid welding. Annual Assembly of the International Institute of Welding: 56: (2003) Klas, N, et al. Parameter influence in CO2-laser/MIG hybrid welding. Annual Assembly of the International Institute of Welding: 56: (2003)
25.
Zurück zum Zitat Jhaveri, P., et al.: The effect of plate thickness and radiation on heat flow in welding and cutting. Weld. J. 41, 6–12 (1962) Jhaveri, P., et al.: The effect of plate thickness and radiation on heat flow in welding and cutting. Weld. J. 41, 6–12 (1962)
26.
Zurück zum Zitat Kah, P.: Overview of the exploration status of laser-arc hybrid welding processes. Rev. Adv. Mater. Sci. 30, 112–132 (2012) Kah, P.: Overview of the exploration status of laser-arc hybrid welding processes. Rev. Adv. Mater. Sci. 30, 112–132 (2012)
Metadaten
Titel
Prediction and Control of Asymmetric Bead Shape in Laser-Arc Hybrid Fillet-Lap Joints in Sheet Metal Welds
verfasst von
Prashant Kochar
Abhay Sharma
Tetsuo Suga
Manbu Tanaka
Publikationsdatum
01.02.2019
Verlag
Springer US
Erschienen in
Lasers in Manufacturing and Materials Processing / Ausgabe 1/2019
Print ISSN: 2196-7229
Elektronische ISSN: 2196-7237
DOI
https://doi.org/10.1007/s40516-019-0081-y

Weitere Artikel der Ausgabe 1/2019

Lasers in Manufacturing and Materials Processing 1/2019 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.