Skip to main content
Erschienen in: Mobile Networks and Applications 2/2020

09.07.2019

Prediction Based Vehicular Caching: Where and What to Cache?

verfasst von: Yao Zhang, Changle Li, Tom H. Luan, Yuchuan Fu, Hui Wang

Erschienen in: Mobile Networks and Applications | Ausgabe 2/2020

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The explosive growth of user demands for mobile data puts forward higher requirements for existing network architecture. In this case, many novel technologies, such as edge computing, ultra-dense network (UND), are recently proposed to alleviate the network burden of cellular macro base stations (MBSs). However, their performance is limited by dynamic user requests and uncertain user mobility since they highly rely on the fixed infrastructure. Along with the advent of autonomous driving era, autonomous vehicles possess strong computing and communication ability, which provide a new idea to resolve the limitation of infrastructure based network architecture. In this paper, we exploit the performance of a vehicular caching scheme where the role of moving vehicles is changed from service consumers in traditional networks to service providers and service consumers. As such, a prediction based vehicular caching scheme is proposed. Specifically, an optimization problem is firstly formulated by exploring the relationship of caching vehicles and mobile users, in order to optimize the network energy efficiency. The nonconvex optimization problem is solved by decomposing it into a nonlinear programming problem. By applying the Lyapunov method and autoregressive neural network (ANN), an online caching decision algorithm is finally proposed to make caching decisions. Extensive simulations are conducted to evaluate the caching scheme in different scenarios. Results show that the vehicular caching scheme can obviously improve network energy efficiency with different requests, but the increment is reduced under the scenario of intensive requests. The comparison between online and offline caching also shows the necessity of online caching decision making due to its benefit in resource utilization where system gain is increased from 8.4% to 59.24%.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Weitere Produktempfehlungen anzeigen
Literatur
1.
Zurück zum Zitat Cisco Visual Networking Index: Global mobile data traffic forecast update, 2017–2022 white paper, accessed on Feb. 18, 2019 Cisco Visual Networking Index: Global mobile data traffic forecast update, 2017–2022 white paper, accessed on Feb. 18, 2019
2.
Zurück zum Zitat Shi W, Cao J, Zhang Q, Li Y, Xu L (2016) Edge computing: vision and challenges. IEEE Internet Things J 3(5):637–646CrossRef Shi W, Cao J, Zhang Q, Li Y, Xu L (2016) Edge computing: vision and challenges. IEEE Internet Things J 3(5):637–646CrossRef
3.
Zurück zum Zitat Liu D, Yang C (2016) Energy efficiency of downlink networks with caching at base stations. IEEE J Sel Areas Commun 34(4):907–C922CrossRef Liu D, Yang C (2016) Energy efficiency of downlink networks with caching at base stations. IEEE J Sel Areas Commun 34(4):907–C922CrossRef
4.
Zurück zum Zitat Yu H, Cheung M-H, Iosifidis G, Gao L, Tassiulas L, Huang J (2017) Mobile data offloading for green wireless networks. IEEE Wirel Commun 24(4):31–37CrossRef Yu H, Cheung M-H, Iosifidis G, Gao L, Tassiulas L, Huang J (2017) Mobile data offloading for green wireless networks. IEEE Wirel Commun 24(4):31–37CrossRef
5.
Zurück zum Zitat Zhang Y, Li C, Luan TH, Fu Y, Zhu L (2018) Caching on vehicles: a lyapunov based online algorithm. In: EAI International Conference on Ad Hoc Networks (ADHOCNETS), pp 1–5 Zhang Y, Li C, Luan TH, Fu Y, Zhu L (2018) Caching on vehicles: a lyapunov based online algorithm. In: EAI International Conference on Ad Hoc Networks (ADHOCNETS), pp 1–5
6.
Zurück zum Zitat Zhang Y, Li C, Luan TH, Fu Y, Shi W, Zhu L (2019) A mobility-aware vehicular caching scheme in content centric networks: model and optimization. IEEE Trans Veh Technol 68(4):3100–3112CrossRef Zhang Y, Li C, Luan TH, Fu Y, Shi W, Zhu L (2019) A mobility-aware vehicular caching scheme in content centric networks: model and optimization. IEEE Trans Veh Technol 68(4):3100–3112CrossRef
7.
Zurück zum Zitat Li C, Zhang J, Letaief K-B (2014) Throughput and energy efficiency analysis of small cell networks with multi-antenna base stations. IEEE Trans Wirel Commun 13(5):2505–2517CrossRef Li C, Zhang J, Letaief K-B (2014) Throughput and energy efficiency analysis of small cell networks with multi-antenna base stations. IEEE Trans Wirel Commun 13(5):2505–2517CrossRef
8.
Zurück zum Zitat Xu J, Chen L, Zhou P (2018) Joint service caching and task offloading for mobile edge computing in dense networks. In: IEEE Conference on Computer Communications (INFOCOM) Xu J, Chen L, Zhou P (2018) Joint service caching and task offloading for mobile edge computing in dense networks. In: IEEE Conference on Computer Communications (INFOCOM)
9.
Zurück zum Zitat Vigneri L, Pecoraro S, Spyropoulos T, Barakat C (2017) Per chunk caching for video streaming from a vehicular cloud. In: ACM Mobicom Workshop on Challenged Networks (CHANTS) Vigneri L, Pecoraro S, Spyropoulos T, Barakat C (2017) Per chunk caching for video streaming from a vehicular cloud. In: ACM Mobicom Workshop on Challenged Networks (CHANTS)
10.
Zurück zum Zitat Vigneri L, Spyropoulos T, Barakat C (2017) Quality of experience-aware mobile edge caching through a vehicular cloud. In: 20Th ACM International Conference on Modelling, Analysis and Simulation of Wireless and Mobile Systems, pp 91–98 Vigneri L, Spyropoulos T, Barakat C (2017) Quality of experience-aware mobile edge caching through a vehicular cloud. In: 20Th ACM International Conference on Modelling, Analysis and Simulation of Wireless and Mobile Systems, pp 91–98
11.
Zurück zum Zitat Zhang S, Luo Y, Li K, Li V (2018) Real-time energy-efficient control for fully electric vehicles based on explicit model predictive control method. IEEE Trans Veh Technol 67(6):4693–4701CrossRef Zhang S, Luo Y, Li K, Li V (2018) Real-time energy-efficient control for fully electric vehicles based on explicit model predictive control method. IEEE Trans Veh Technol 67(6):4693–4701CrossRef
12.
Zurück zum Zitat Zhang R, Li Y, Wang C-X, Ruan Y, Fu Y, Zhang H (2018) Energy-spectral efficiency trade-off in underlaying mobile D2D communications: an economic efficiency perspective. IEEE Trans Wirel Commun 17 (7):4288–4301CrossRef Zhang R, Li Y, Wang C-X, Ruan Y, Fu Y, Zhang H (2018) Energy-spectral efficiency trade-off in underlaying mobile D2D communications: an economic efficiency perspective. IEEE Trans Wirel Commun 17 (7):4288–4301CrossRef
13.
Zurück zum Zitat Kolios P, Papadaki K, Friderikos V (2016) Efficient cellular load balancing through mobility-enriched vehicular communications. IEEE Trans Intell Transp Syst 17(10):2971–2983CrossRef Kolios P, Papadaki K, Friderikos V (2016) Efficient cellular load balancing through mobility-enriched vehicular communications. IEEE Trans Intell Transp Syst 17(10):2971–2983CrossRef
14.
Zurück zum Zitat Kumar N, Lee J-H, Chilamkurti N, Vinel A (2015) Energy-efficient multimedia data dissemination in vehicular clouds: stochastic-reward-nets-based coalition game approach. IEEE Syst J 10(2):847–858CrossRef Kumar N, Lee J-H, Chilamkurti N, Vinel A (2015) Energy-efficient multimedia data dissemination in vehicular clouds: stochastic-reward-nets-based coalition game approach. IEEE Syst J 10(2):847–858CrossRef
15.
Zurück zum Zitat Zhou Z, Yu H, Xu C, Chang Z, Mumtaz S, Rodriguez J (2018) BEGIN: Big data enabled energy-efficient vehicular edge computing. IEEE Commun Mag 56(12):82–89CrossRef Zhou Z, Yu H, Xu C, Chang Z, Mumtaz S, Rodriguez J (2018) BEGIN: Big data enabled energy-efficient vehicular edge computing. IEEE Commun Mag 56(12):82–89CrossRef
16.
Zurück zum Zitat Gabry F, Bioglio V, Land I (2016) On energy-efficient edge caching in heterogeneous networks. IEEE J Sel Areas Commun 34(12):3288–3298CrossRef Gabry F, Bioglio V, Land I (2016) On energy-efficient edge caching in heterogeneous networks. IEEE J Sel Areas Commun 34(12):3288–3298CrossRef
17.
Zurück zum Zitat Mackey MC, Glass L (1977) Oscillation and chaos in physiological control systems. Science 197(4300):287–289CrossRef Mackey MC, Glass L (1977) Oscillation and chaos in physiological control systems. Science 197(4300):287–289CrossRef
18.
Zurück zum Zitat Chandra R (2015) Competition and collaboration in cooperative coevolution of elman recurrent neural networks for time-series prediction. IEEE Transactions on Neural Networks & Learning Systems 26(12):3123MathSciNetCrossRef Chandra R (2015) Competition and collaboration in cooperative coevolution of elman recurrent neural networks for time-series prediction. IEEE Transactions on Neural Networks & Learning Systems 26(12):3123MathSciNetCrossRef
19.
Zurück zum Zitat Mirikitani DT, Nikolaev N (2010) Recursive bayesian recurrent neural networks for time-series modeling Mirikitani DT, Nikolaev N (2010) Recursive bayesian recurrent neural networks for time-series modeling
20.
Zurück zum Zitat Ardalani-Farsa M, Zolfaghari S (2010) Chaotic time series prediction with residual analysis method using hybrid elman–CNARX neural networks Ardalani-Farsa M, Zolfaghari S (2010) Chaotic time series prediction with residual analysis method using hybrid elman–CNARX neural networks
21.
Zurück zum Zitat Taskaya-Temizel T, Casey MC (2005) A comparative study of autoregressive neural network hybrids. Neural Netw 18(5-6):781–789CrossRef Taskaya-Temizel T, Casey MC (2005) A comparative study of autoregressive neural network hybrids. Neural Netw 18(5-6):781–789CrossRef
22.
Zurück zum Zitat Benmouiza K, Cheknane A (2013) Forecasting hourly global solar radiation using hybrid k-means and nonlinear autoregressive neural network models. Energy Convers Manag 75(5):561–569CrossRef Benmouiza K, Cheknane A (2013) Forecasting hourly global solar radiation using hybrid k-means and nonlinear autoregressive neural network models. Energy Convers Manag 75(5):561–569CrossRef
24.
Zurück zum Zitat Neely MJ (2010) Stochastic network optimization with application to communication and queueing systems. Synthesis Lectures on Communication Networks 3(1):1–211CrossRef Neely MJ (2010) Stochastic network optimization with application to communication and queueing systems. Synthesis Lectures on Communication Networks 3(1):1–211CrossRef
25.
Zurück zum Zitat Yao L, Chen A, Deng J, Wang J, Wu G (2018) A cooperative caching scheme based on mobility prediction in vehicular content centric networks. IEEE Trans Veh Technol 67(6):5435–5444CrossRef Yao L, Chen A, Deng J, Wang J, Wu G (2018) A cooperative caching scheme based on mobility prediction in vehicular content centric networks. IEEE Trans Veh Technol 67(6):5435–5444CrossRef
26.
Zurück zum Zitat Hu B, Fang L, Cheng X, Yang L (2019) In-vehicle caching (iv-cache) via dynamic distributed storage relay (d2sr) in vehicular networks. IEEE Trans Veh Technol 68(1):843–855CrossRef Hu B, Fang L, Cheng X, Yang L (2019) In-vehicle caching (iv-cache) via dynamic distributed storage relay (d2sr) in vehicular networks. IEEE Trans Veh Technol 68(1):843–855CrossRef
27.
Zurück zum Zitat Liu N, Liu M, Lou W, Chen G, Cao J (2011) Pva in vanets: stopped cars are not silent. In: 2011 Proceedings IEEE INFOCOM, pp 431–435 Liu N, Liu M, Lou W, Chen G, Cao J (2011) Pva in vanets: stopped cars are not silent. In: 2011 Proceedings IEEE INFOCOM, pp 431–435
28.
Zurück zum Zitat Su Z, Xu Q, Hui Y, Wen M, Guo S (2017) In-vehicle caching (iv-cache) via dynamic distributed storage relay (d2sr) in vehicular networks. IEEE Trans Veh Technol 66(7):6461–6474CrossRef Su Z, Xu Q, Hui Y, Wen M, Guo S (2017) In-vehicle caching (iv-cache) via dynamic distributed storage relay (d2sr) in vehicular networks. IEEE Trans Veh Technol 66(7):6461–6474CrossRef
Metadaten
Titel
Prediction Based Vehicular Caching: Where and What to Cache?
verfasst von
Yao Zhang
Changle Li
Tom H. Luan
Yuchuan Fu
Hui Wang
Publikationsdatum
09.07.2019
Verlag
Springer US
Erschienen in
Mobile Networks and Applications / Ausgabe 2/2020
Print ISSN: 1383-469X
Elektronische ISSN: 1572-8153
DOI
https://doi.org/10.1007/s11036-019-01300-z

Weitere Artikel der Ausgabe 2/2020

Mobile Networks and Applications 2/2020 Zur Ausgabe

Neuer Inhalt