Skip to main content
Erschienen in: Rare Metals 5/2018

15.03.2018

Prediction model for flow stress during isothermal compression in α + β phase field of TC4 alloy

verfasst von: Shun Yang, Hong Li, Jiao Luo, Yin-Gang Liu, Miao-Quan Li

Erschienen in: Rare Metals | Ausgabe 5/2018

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Isothermal compression of TC4 alloy was performed on a Thermecmaster-Z simulator at the deformation temperatures ranging from 1093 to 1243 K, the strain rates ranging from 0.001 to 10.000 s−1 and a maximum strain of 0.8. The experimental results show that the flow stress increases with the decrease in the deformation temperature and the increase in the strain rate. The apparent activation energy for deformation is much lower at lower strain rates than that at higher strain rates. The flow stress model considering strain compensation was established. The average relative error between the calculated flow stress and experimental results is about 7.69%, indicating that the present model could be used to accurately predict the flow stress during high temperature in α + β phase field of TC4 alloy.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
[1]
Zurück zum Zitat Yuan Z, Li F, Qiao H, Xiao M, Cai J, Li J. A modified constitutive equation for elevated temperature flow behavior of Ti–6Al–4V alloy based on double multiple nonlinear regression. Mater Sci Eng A. 2013;578:260.CrossRef Yuan Z, Li F, Qiao H, Xiao M, Cai J, Li J. A modified constitutive equation for elevated temperature flow behavior of Ti–6Al–4V alloy based on double multiple nonlinear regression. Mater Sci Eng A. 2013;578:260.CrossRef
[2]
Zurück zum Zitat Li J, Li F, Cai J, Wang R, Yuan Z, Xue F. Flow behavior modeling of the 7050 aluminum alloy at elevated temperatures considering the compensation of strain. Mater Des. 2012;42:369.CrossRef Li J, Li F, Cai J, Wang R, Yuan Z, Xue F. Flow behavior modeling of the 7050 aluminum alloy at elevated temperatures considering the compensation of strain. Mater Des. 2012;42:369.CrossRef
[3]
Zurück zum Zitat Li H, Yang C, Sun L, Li M. Influence of pressure on interfacial microstructure evolution and atomic diffusion in the hot-press bonding of Ti–33Al–3V to TC17. J Alloys Compd. 2017;720:131.CrossRef Li H, Yang C, Sun L, Li M. Influence of pressure on interfacial microstructure evolution and atomic diffusion in the hot-press bonding of Ti–33Al–3V to TC17. J Alloys Compd. 2017;720:131.CrossRef
[4]
Zurück zum Zitat Liu N, Li Z, Xu WY, Wang Y, Zhang GQ, Yuan H. Hot deformation behavior and microstructural evolution of powder metallurgical TiAl alloy. Rare Met. 2017;36(4):236.CrossRef Liu N, Li Z, Xu WY, Wang Y, Zhang GQ, Yuan H. Hot deformation behavior and microstructural evolution of powder metallurgical TiAl alloy. Rare Met. 2017;36(4):236.CrossRef
[5]
Zurück zum Zitat Feng YL, Li J, Ai LQ, Duan BM. Deformation resistance of Fe–Mn–V–N alloy under different deformation processes. Rare Met. 2017;36(10):833.CrossRef Feng YL, Li J, Ai LQ, Duan BM. Deformation resistance of Fe–Mn–V–N alloy under different deformation processes. Rare Met. 2017;36(10):833.CrossRef
[6]
Zurück zum Zitat Chen G, Ren C, Qin X, Li J. Temperature dependent work hardening in Ti–6Al–4V alloy over large temperature and strain rate ranges: experiments and constitutive modeling. Mater Des. 2015;83:598.CrossRef Chen G, Ren C, Qin X, Li J. Temperature dependent work hardening in Ti–6Al–4V alloy over large temperature and strain rate ranges: experiments and constitutive modeling. Mater Des. 2015;83:598.CrossRef
[7]
Zurück zum Zitat Kim JH, Semiatin SL, Lee YH, Lee CS. A self-consistent approach for modeling the flow behavior of the alpha and beta phases in Ti–6Al–4V. Metall Mater Trans A Phys Metall Mater Sci. 2011;42(7):1805.CrossRef Kim JH, Semiatin SL, Lee YH, Lee CS. A self-consistent approach for modeling the flow behavior of the alpha and beta phases in Ti–6Al–4V. Metall Mater Trans A Phys Metall Mater Sci. 2011;42(7):1805.CrossRef
[8]
Zurück zum Zitat Liu YG, Li MQ, Luo J. The modelling of dynamic recrystallization in the isothermal compression of 300 M steel. Mater Sci Eng A. 2013;574:1.CrossRef Liu YG, Li MQ, Luo J. The modelling of dynamic recrystallization in the isothermal compression of 300 M steel. Mater Sci Eng A. 2013;574:1.CrossRef
[9]
Zurück zum Zitat Hou XL, Li Y, Lv P, Cai J, Ji L, Guan QF. Hot deformation behavior and microstructure evolution of a Mg–Gd–Nd–Y–Zn alloy. Rare Met. 2016;35(7):532.CrossRef Hou XL, Li Y, Lv P, Cai J, Ji L, Guan QF. Hot deformation behavior and microstructure evolution of a Mg–Gd–Nd–Y–Zn alloy. Rare Met. 2016;35(7):532.CrossRef
[10]
Zurück zum Zitat Liu SF, Li MQ, Luo J, Yang Z. Deformation behavior in the isothermal compression of Ti–5Al–5Mo–5V–1Cr–1Fe alloy. Mater Sci Eng A. 2014;589:15.CrossRef Liu SF, Li MQ, Luo J, Yang Z. Deformation behavior in the isothermal compression of Ti–5Al–5Mo–5V–1Cr–1Fe alloy. Mater Sci Eng A. 2014;589:15.CrossRef
[11]
Zurück zum Zitat Pilehva F, Zarei-Hanzaki A, Ghambari M, Abedi HR. Flow behavior modeling of a Ti–6Al–7Nb biomedical alloy during manufacturing at elevated temperatures. Mater Des. 2013;51:457.CrossRef Pilehva F, Zarei-Hanzaki A, Ghambari M, Abedi HR. Flow behavior modeling of a Ti–6Al–7Nb biomedical alloy during manufacturing at elevated temperatures. Mater Des. 2013;51:457.CrossRef
[12]
Zurück zum Zitat Niu Y, Luo J, Li MQ. An adaptive constitutive model in the isothermal compression of Ti600 alloy. Mater Sci Eng A. 2010;527(21–22):5924.CrossRef Niu Y, Luo J, Li MQ. An adaptive constitutive model in the isothermal compression of Ti600 alloy. Mater Sci Eng A. 2010;527(21–22):5924.CrossRef
[13]
Zurück zum Zitat Liu YG, Li MQ, Liu HJ. Surface nanocrystallization and gradient structure developed in the bulk TC4 alloy processed by shot peening. J Alloys Compd. 2016;685:186.CrossRef Liu YG, Li MQ, Liu HJ. Surface nanocrystallization and gradient structure developed in the bulk TC4 alloy processed by shot peening. J Alloys Compd. 2016;685:186.CrossRef
[14]
Zurück zum Zitat Reddy NS, Lee YH, Kim JH, Lee CS. High temperature deformation behavior of Ti–6Al–4V alloy with and equiaxed microstructure: a neural networks analysis. Met Mater Int. 2008;14:213.CrossRef Reddy NS, Lee YH, Kim JH, Lee CS. High temperature deformation behavior of Ti–6Al–4V alloy with and equiaxed microstructure: a neural networks analysis. Met Mater Int. 2008;14:213.CrossRef
[15]
Zurück zum Zitat Sun J, Guo YB. Material flow stress and failure in multiscale machining titanium alloy Ti–6Al–4V. Int J Adv Manuf Technol. 2009;41(7–8):651.CrossRef Sun J, Guo YB. Material flow stress and failure in multiscale machining titanium alloy Ti–6Al–4V. Int J Adv Manuf Technol. 2009;41(7–8):651.CrossRef
[16]
Zurück zum Zitat Liu YG, Li MQ, Liu HJ. Deformation induced face-centered cubic titanium and its twinning behavior in Ti–6Al–4V. Scr Mater. 2016;119:5.CrossRef Liu YG, Li MQ, Liu HJ. Deformation induced face-centered cubic titanium and its twinning behavior in Ti–6Al–4V. Scr Mater. 2016;119:5.CrossRef
[17]
Zurück zum Zitat Kim Y, Song YB, Lee SH, Kwon YS. Characterization of the hot deformation behavior and microstructural evolution of Ti–6Al–4V sintered preforms using materials modeling techniques. J Alloys Compd. 2016;676:15.CrossRef Kim Y, Song YB, Lee SH, Kwon YS. Characterization of the hot deformation behavior and microstructural evolution of Ti–6Al–4V sintered preforms using materials modeling techniques. J Alloys Compd. 2016;676:15.CrossRef
[18]
Zurück zum Zitat Wang F, Zhao J, Zhu N, Li Z. A comparative study on Johnson–Cook constitutive modeling for Ti–6Al–4V alloy using automated ball indentation (ABI) technique. J Alloys Compd. 2015;633:220.CrossRef Wang F, Zhao J, Zhu N, Li Z. A comparative study on Johnson–Cook constitutive modeling for Ti–6Al–4V alloy using automated ball indentation (ABI) technique. J Alloys Compd. 2015;633:220.CrossRef
[19]
Zurück zum Zitat Xiao J, Li DS, Li XQ, Deng TS. Constitutive modeling and microstructure change of Ti–6Al–4V during the hot tensile deformation. J Alloys Compd. 2012;541:346.CrossRef Xiao J, Li DS, Li XQ, Deng TS. Constitutive modeling and microstructure change of Ti–6Al–4V during the hot tensile deformation. J Alloys Compd. 2012;541:346.CrossRef
[20]
Zurück zum Zitat Ding R, Guo ZX. Microstructural evolution of a Ti–6Al–4V alloy during β-phase processing: experimental and simulative investigations. Mater Sci Eng A. 2004;365(1–2):172.CrossRef Ding R, Guo ZX. Microstructural evolution of a Ti–6Al–4V alloy during β-phase processing: experimental and simulative investigations. Mater Sci Eng A. 2004;365(1–2):172.CrossRef
[21]
Zurück zum Zitat Shafaat MA, Omidvar H, Fallah B. Prediction of hot compression flow curves of Ti–6Al–4V alloy in α + β phase region. Mater Des. 2011;32(10):4689.CrossRef Shafaat MA, Omidvar H, Fallah B. Prediction of hot compression flow curves of Ti–6Al–4V alloy in α + β phase region. Mater Des. 2011;32(10):4689.CrossRef
[22]
Zurück zum Zitat Porntadawit J, Uthaisangsuk V, Choungthong P. Modeling of flow behavior of Ti–6Al–4V alloy at elevated temperatures. Mater Sci Eng A. 2014;599:212.CrossRef Porntadawit J, Uthaisangsuk V, Choungthong P. Modeling of flow behavior of Ti–6Al–4V alloy at elevated temperatures. Mater Sci Eng A. 2014;599:212.CrossRef
[23]
Zurück zum Zitat Kotkunde N, Deole AD, Gupta AK, Singh SK. Comparative study of constitutive modeling for Ti–6Al–4V alloy at low strain rates and elevated temperatures. Mater Des. 2014;55:999.CrossRef Kotkunde N, Deole AD, Gupta AK, Singh SK. Comparative study of constitutive modeling for Ti–6Al–4V alloy at low strain rates and elevated temperatures. Mater Des. 2014;55:999.CrossRef
[24]
Zurück zum Zitat Luo J, Li M, Yu W. Prediction of flow stress in isothermal compression of Ti–6Al–4V alloy using fuzzy neural network. Mater Des. 2010;31(6):3078.CrossRef Luo J, Li M, Yu W. Prediction of flow stress in isothermal compression of Ti–6Al–4V alloy using fuzzy neural network. Mater Des. 2010;31(6):3078.CrossRef
[25]
Zurück zum Zitat Reddy NS, Lee YH, Park CH, Lee CS. Prediction of flow stress in Ti–6Al–4V alloy with an equiaxed α + β microstructure by artificial neural networks. Mater Sci Eng A. 2008;492(1–2):276.CrossRef Reddy NS, Lee YH, Park CH, Lee CS. Prediction of flow stress in Ti–6Al–4V alloy with an equiaxed α + β microstructure by artificial neural networks. Mater Sci Eng A. 2008;492(1–2):276.CrossRef
[26]
Zurück zum Zitat Luo J, Li M, Li X, Shi Y. Constitutive model for high temperature deformation of titanium alloys using internal state variables. Mech Mater. 2010;42(2):157.CrossRef Luo J, Li M, Li X, Shi Y. Constitutive model for high temperature deformation of titanium alloys using internal state variables. Mech Mater. 2010;42(2):157.CrossRef
[27]
Zurück zum Zitat Peng X, Guo H, Shi Z, Qin C, Zhao Z. Constitutive equations for high temperature flow stress of TC4–DT alloy incorporating strain, strain rate and temperature. Mater Des. 2013;50:198.CrossRef Peng X, Guo H, Shi Z, Qin C, Zhao Z. Constitutive equations for high temperature flow stress of TC4–DT alloy incorporating strain, strain rate and temperature. Mater Des. 2013;50:198.CrossRef
[28]
Zurück zum Zitat Luo J, Li M, Yu W, Li H. The variation of strain rate sensitivity exponent and strain hardening exponent in isothermal compression of Ti–6Al–4V alloy. Mater Des. 2010;31:741.CrossRef Luo J, Li M, Yu W, Li H. The variation of strain rate sensitivity exponent and strain hardening exponent in isothermal compression of Ti–6Al–4V alloy. Mater Des. 2010;31:741.CrossRef
[29]
Zurück zum Zitat Hao Z, Ji F, Fan Y, Lin J, Liu X, Gao S. Flow characteristics and constitutive equations of flow stress in high speed cutting Alloy 718. J Alloys Compd. 2017;728:854.CrossRef Hao Z, Ji F, Fan Y, Lin J, Liu X, Gao S. Flow characteristics and constitutive equations of flow stress in high speed cutting Alloy 718. J Alloys Compd. 2017;728:854.CrossRef
[30]
Zurück zum Zitat He S, Li CS, Huang ZY, Zheng JJ. A modified constitutive model based on Arrhenius-type equation to predict the flow behavior of Fe–36% Ni Invar alloy. J Mater Res. 2017;32(20):3831.CrossRef He S, Li CS, Huang ZY, Zheng JJ. A modified constitutive model based on Arrhenius-type equation to predict the flow behavior of Fe–36% Ni Invar alloy. J Mater Res. 2017;32(20):3831.CrossRef
[31]
Zurück zum Zitat Rastegari H, Rakhshkhorshid M, Somani MC, Porter DA. Constitutive modeling of warm deformation flow curves of an eutectoid steel. J Mater Eng Perform. 2017;26(5):2170.CrossRef Rastegari H, Rakhshkhorshid M, Somani MC, Porter DA. Constitutive modeling of warm deformation flow curves of an eutectoid steel. J Mater Eng Perform. 2017;26(5):2170.CrossRef
[32]
Zurück zum Zitat Cai J, Wang K, Zhai P, Li F, Yang J. A modified Johnson-Cook constitutive equation to predict hot deformation behavior of Ti–6Al–4V alloy. J Mater Eng Perform. 2015;24(1):32.CrossRef Cai J, Wang K, Zhai P, Li F, Yang J. A modified Johnson-Cook constitutive equation to predict hot deformation behavior of Ti–6Al–4V alloy. J Mater Eng Perform. 2015;24(1):32.CrossRef
[33]
Zurück zum Zitat Changizian P, Zarei-Hanzaki A, Roostaei AA. The high temperature flow behavior modeling of AZ81 magnesium alloy considering strain effects. Mater Des. 2012;39:384.CrossRef Changizian P, Zarei-Hanzaki A, Roostaei AA. The high temperature flow behavior modeling of AZ81 magnesium alloy considering strain effects. Mater Des. 2012;39:384.CrossRef
[34]
Zurück zum Zitat Ji G, Li F, Li Q, Li H, Li Z. A comparative study on Arrhenius-type constitutive model and artificial neural network model to predict high-temperature deformation behaviour in Aermet100 steel. Mater Sci Eng A. 2011;528(13–14):4774.CrossRef Ji G, Li F, Li Q, Li H, Li Z. A comparative study on Arrhenius-type constitutive model and artificial neural network model to predict high-temperature deformation behaviour in Aermet100 steel. Mater Sci Eng A. 2011;528(13–14):4774.CrossRef
Metadaten
Titel
Prediction model for flow stress during isothermal compression in α + β phase field of TC4 alloy
verfasst von
Shun Yang
Hong Li
Jiao Luo
Yin-Gang Liu
Miao-Quan Li
Publikationsdatum
15.03.2018
Verlag
Nonferrous Metals Society of China
Erschienen in
Rare Metals / Ausgabe 5/2018
Print ISSN: 1001-0521
Elektronische ISSN: 1867-7185
DOI
https://doi.org/10.1007/s12598-018-1012-3

Weitere Artikel der Ausgabe 5/2018

Rare Metals 5/2018 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.