Skip to main content
main-content

Tipp

Weitere Artikel dieser Ausgabe durch Wischen aufrufen

01.02.2018 | Sonderheft 2/2019

Cluster Computing 2/2019

Prediction model for railway freight volume with GCA-genetic algorithm-generalized neural network: empirical analysis of China

Zeitschrift:
Cluster Computing > Sonderheft 2/2019
Autoren:
Pei Wang, Xiaodong Zhang, Boling Han, Maoxiang Lang

Abstract

Reasonable and scientific prediction for railway freight volume has an important impact on railway network planning and railway transportation resources allocation. However, to predict the future railway freight volume is complicated and difficult, because it is influenced by many factors, such as macro economy, industrial structure, and supply capacity, etc. In this paper, an improved prediction model is proposed, named as GCA-GA-GNN. GCA is short for grey correlation analysis, which was adopted to select the key factors which have great influence on railway freight volume instead of subjective factors. GNN is the main body of the prediction model, which combines grey prediction model and neural networks to take the advantages of linear and nonlinear modeling capabilities. Moreover, genetic algorithm is used in GNN to improve calculating speed. Then, the validity of the model was verified by the empirical case of China. The results of five different prediction models showed that the model proposed in this paper has faster convergence speed and higher prediction accuracy. Moreover, according to the downward trend of China railway freight volume from the year 2017 to 2020, some suggestions are proposed to reverse the downward trend and increase railway corporation’s profits.

Bitte loggen Sie sich ein, um Zugang zu diesem Inhalt zu erhalten

Sie möchten Zugang zu diesem Inhalt erhalten? Dann informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 69.000 Bücher
  • über 500 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Umwelt
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Testen Sie jetzt 30 Tage kostenlos.

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 50.000 Bücher
  • über 380 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Umwelt
  • Maschinenbau + Werkstoffe




Testen Sie jetzt 30 Tage kostenlos.

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 58.000 Bücher
  • über 300 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Testen Sie jetzt 30 Tage kostenlos.

Literatur
Über diesen Artikel

Weitere Artikel der Sonderheft 2/2019

Cluster Computing 2/2019 Zur Ausgabe

Premium Partner

    Bildnachweise