Skip to main content
Erschienen in: Metallurgical and Materials Transactions B 6/2014

01.12.2014

Prediction Model of Sulfide Capacity for CaO-FeO-Fe2O3-Al2O3-P2O5 Slags in a Large Variation Range of Oxygen Potential Based on the Ion and Molecule Coexistence Theory

verfasst von: Xue-Min Yang, Jin-Yan Li, Meng Zhang, Guo-Min Chai, Jian Zhang

Erschienen in: Metallurgical and Materials Transactions B | Ausgabe 6/2014

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

A thermodynamic model for predicting sulfide capacity \( C_{{{\text{S}}^{2 -}}} \) of CaO-FeO-Fe2O3-Al2O3-P2O5 slags in a large variation range of oxygen potential \( p_{{{\text{O}}_{ 2}}} \) corresponding to mass percentage of Fe t O from 1.88 to 55.50 pct, i.e., IMCT-\( C_{{{\text{S}}^{2 -}}} \) model, has been developed by coupling with the deduced desulfurization mechanism of the slags based on the ion and molecule coexistence theory (IMCT). The developed IMCT-\( C_{{{\text{S}}^{2 -}}} \) model has been verified through comparing the determined sulfide capacity \( C_{{{\text{S}}^{ 2-} , {\text{ determined}}}} \) after Ban-ya et al.[20] with the calculated \( C_{{{\text{S}}^{ 2-} , {\text{ calculated}}}}^{\text{IMCT}} \) by the developed IMCT-\( C_{{{\text{S}}^{2 -}}} \) model and the calculated \( C_{{{\text{S}}^{ 2-} , {\text{ calculated}}}}^{i} \) by the reported sulfide capacity \( C_{{{\text{S}}^{2 -}}} \) models such as the KTH model. Mass percentage of Fe t O as 6.75 pct corresponding to the mass action concentration \( N_{{{\text{Fe}}_{t} {\text{O}}}} \) of Fe t O as 0.0637 or oxygen partial \( p_{{{\text{O}}_{2} }} \) as 2.27 × 10−6 Pa is the criterion for distinguishing reducing and oxidizing zones for the slags. Sulfide capacity \( C_{{{\text{S}}^{2 - } }} \) of the slags in reducing zone is controlled by reaction ability of CaO regardless of slag oxidization ability. However, sulfide capacity \( C_{{{\text{S}}^{2 - } }} \) of the slags in oxidizing zone shows an obvious increase tendency with the increasing of slag oxidization ability. Sulfide capacity \( C_{{{\text{S}}^{2 - } }} \) of the slags in reducing zone keeps almost constant with variation of the simplified complex basicity (pct CaO)/((pct Al2O3) + (pct P2O5)), or optical basicity, or the mass action concentration ratios of N FeO/N CaO, \( N_{{{\text{Fe}}_{ 2} {\text{O}}_{ 3} }} /N_{\text{CaO}} \), \( N_{{{\text{FeO}} \cdot {\text{Fe}}_{2} {\text{O}}_{3} }} /N_{\text{CaO}} \), and \( N_{{{\text{Fe}}_{t} {\text{O}}}} /N_{\text{CaO}} \). Sulfide capacity \( C_{{{\text{S}}^{2 - } }} \) of the slags in oxidizing zone shows an obvious increase with the increasing of the simplified complex basicity (pct CaO)/((pct Al2O3) + (pct P2O5)) or optical basicity, or the aforementioned mass action concentration ratios. Thus, the aforementioned mass action concentration ratios and the corresponding mass percentage ratios of various iron oxides to basic oxide CaO are recommended to represent the comprehensive effect of various iron oxides and basic oxide CaO on sulfide capacity \( C_{{{\text{S}}^{2 - } }} \) of the slags.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat T. Takenouchi and K. Suzuki: Effect of Slag Composition on the Desulfurization and Dephosphorization of Molten Steel. Tetsu-to-Hagané, 1978, vol. 64(8), pp. 1133–42. T. Takenouchi and K. Suzuki: Effect of Slag Composition on the Desulfurization and Dephosphorization of Molten Steel. Tetsu-to-Hagané, 1978, vol. 64(8), pp. 1133–42.
2.
Zurück zum Zitat H. Suito, A. Ishizaka, R. Inoue, and Y. Takahashi: Tetsu-to-Hagané, 1979, vol. 65(13), pp. 1848–57. H. Suito, A. Ishizaka, R. Inoue, and Y. Takahashi: Tetsu-to-Hagané, 1979, vol. 65(13), pp. 1848–57.
3.
Zurück zum Zitat T. Moriya and M. Fujii: Dephosphorization and Desulfurization of Molten Pig Iron by Na2CO3. Trans. ISIJ, 1981, vol. 21(10), pp. 732–41.CrossRef T. Moriya and M. Fujii: Dephosphorization and Desulfurization of Molten Pig Iron by Na2CO3. Trans. ISIJ, 1981, vol. 21(10), pp. 732–41.CrossRef
4.
Zurück zum Zitat K. Marukawa, Y. Shirota, S. Anezaki, and H. Hirahara: Tetsu-to-Hagané, 1981, vol. 67(2), pp. 323–32. K. Marukawa, Y. Shirota, S. Anezaki, and H. Hirahara: Tetsu-to-Hagané, 1981, vol. 67(2), pp. 323–32.
5.
Zurück zum Zitat S. S. Yang, Y. C. Dong, and S. Shen: Optimum Oxygen Potential and Electrode Potential of Simultaneous Dephosphorization and Desulfurization in Hot Metal Pretreatment. J. Univ. Sci. Tech. Beijing, 1990, vol. 12(5), pp. 421–30. S. S. Yang, Y. C. Dong, and S. Shen: Optimum Oxygen Potential and Electrode Potential of Simultaneous Dephosphorization and Desulfurization in Hot Metal Pretreatment. J. Univ. Sci. Tech. Beijing, 1990, vol. 12(5), pp. 421–30.
6.
Zurück zum Zitat S. Yamamoto, Y. Fujikake, and S. Sakaguchi: Tetsu-to-Hagané, 1982, vol. 68(14), pp. 1896–904. S. Yamamoto, Y. Fujikake, and S. Sakaguchi: Tetsu-to-Hagané, 1982, vol. 68(14), pp. 1896–904.
7.
Zurück zum Zitat S. J. Takeuchi, M. Ozawa, T. Nozaki, T. Emi, and T. Ohtani: Tetsu-to-Hagané, 1983, vol. 69(15), pp. 1771–78. S. J. Takeuchi, M. Ozawa, T. Nozaki, T. Emi, and T. Ohtani: Tetsu-to-Hagané, 1983, vol. 69(15), pp. 1771–78.
8.
Zurück zum Zitat Y. Nakajima, M. Mukai, and T. Moriya: Tetsu-to-Hagané, 1983, vol. 69(15), pp. 1863–70. Y. Nakajima, M. Mukai, and T. Moriya: Tetsu-to-Hagané, 1983, vol. 69(15), pp. 1863–70.
9.
Zurück zum Zitat S. Yamamoto, H. Ishikawa, Y. Fujikake, C. Sarro, and H. Kajioka: . Tetsu-to-Hagané, 1983, vol. 69(15), pp. 1871–77. S. Yamamoto, H. Ishikawa, Y. Fujikake, C. Sarro, and H. Kajioka: . Tetsu-to-Hagané, 1983, vol. 69(15), pp. 1871–77.
10.
Zurück zum Zitat H. Inoue, Y. Shigeno, M. Tokuda, and M. Ohtani: Tetsu-to-Hagané, 1983, vol. 69(2), pp. 210–19. H. Inoue, Y. Shigeno, M. Tokuda, and M. Ohtani: Tetsu-to-Hagané, 1983, vol. 69(2), pp. 210–19.
11.
Zurück zum Zitat K. Umezawa, H. Matsunaga, R. Arima, S. Tonomura, and I. Furugaki. Tetsu-to-Hagané, 1983, vol. 69(15), pp. 1810–17. K. Umezawa, H. Matsunaga, R. Arima, S. Tonomura, and I. Furugaki. Tetsu-to-Hagané, 1983, vol. 69(15), pp. 1810–17.
12.
Zurück zum Zitat S. Hara, I. Kurata, and K. Ogino: Tetsu-to-Hagané, 1983, vol. 69(15), pp. 1832–36. S. Hara, I. Kurata, and K. Ogino: Tetsu-to-Hagané, 1983, vol. 69(15), pp. 1832–36.
13.
Zurück zum Zitat K. Narita, T. Makino, H. Matsumoto, A. Hikosaka, T. Oonishi, and H. Takagi: Tetsu-to-Hagané, 1983, vol. 69(15), pp. 1825–31. K. Narita, T. Makino, H. Matsumoto, A. Hikosaka, T. Oonishi, and H. Takagi: Tetsu-to-Hagané, 1983, vol. 69(15), pp. 1825–31.
14.
Zurück zum Zitat K. Shinme, T. Matsuo, and T. Aoki: Tetsu-to-Hagané, 1983, vol. 69(15), pp. 1787–94. K. Shinme, T. Matsuo, and T. Aoki: Tetsu-to-Hagané, 1983, vol. 69(15), pp. 1787–94.
15.
Zurück zum Zitat L. C. Zhong, Y. L. Xing, and B. H. Liu: Investigation on Simultaneous Dephosphorization and Desulfurization of Molten Iron by Injecting CaO–Based Fluxes. Steelmaking, 1988, (1), pp. 58–63. L. C. Zhong, Y. L. Xing, and B. H. Liu: Investigation on Simultaneous Dephosphorization and Desulfurization of Molten Iron by Injecting CaO–Based Fluxes. Steelmaking, 1988, (1), pp. 58–63.
16.
Zurück zum Zitat K. Mori, H. Wada, and R. D. Pehlke: Simultaneous Desulfurization and Dephosphorization Reactions of Molten Iron by Soda Ash Treatment. Metall. Trans. B, 1985, vol. 16B(2), pp. 303–12.CrossRef K. Mori, H. Wada, and R. D. Pehlke: Simultaneous Desulfurization and Dephosphorization Reactions of Molten Iron by Soda Ash Treatment. Metall. Trans. B, 1985, vol. 16B(2), pp. 303–12.CrossRef
17.
Zurück zum Zitat R. Inoue, H. Li, and H. Suito: Tetsu-to-Hagané, 1988, vol. 74(10), pp. 1939–45. R. Inoue, H. Li, and H. Suito: Tetsu-to-Hagané, 1988, vol. 74(10), pp. 1939–45.
18.
Zurück zum Zitat R. Nagabayashi, M. Hino, and S. Ban-ya: Tetsu-to-Hagané, 1988, vol. 74(8), pp. 1577–84. R. Nagabayashi, M. Hino, and S. Ban-ya: Tetsu-to-Hagané, 1988, vol. 74(8), pp. 1577–84.
19.
Zurück zum Zitat H. Iwai and K. Kunisada: Desulfurizaiton and Simultaneous Desulfurizaiton and Dephosphorizaiton of Molten Iron by Na2O–SiO2 and Na2O–CaO–SiO2 Fluxes. ISIJ Int., 1989, vol. 29(2), pp. 135–39.CrossRef H. Iwai and K. Kunisada: Desulfurizaiton and Simultaneous Desulfurizaiton and Dephosphorizaiton of Molten Iron by Na2O–SiO2 and Na2O–CaO–SiO2 Fluxes. ISIJ Int., 1989, vol. 29(2), pp. 135–39.CrossRef
20.
Zurück zum Zitat S. Ban-ya, M. Hino, A. Sato, and O. Terayama: Tetsu-to-Hagané, 1991, vol. 77(3), pp. 361–68. S. Ban-ya, M. Hino, A. Sato, and O. Terayama: Tetsu-to-Hagané, 1991, vol. 77(3), pp. 361–68.
21.
Zurück zum Zitat R. W. Young, J. A. Duffy, G. J. Hassall, and Z. Xu: Use of Optical Basicity Concept for Determining Phosphorus and Sulphur Slag–Metal Partitions. Ironmaking Steelmaking, 1992, vol. 19(3), pp. 201–19. R. W. Young, J. A. Duffy, G. J. Hassall, and Z. Xu: Use of Optical Basicity Concept for Determining Phosphorus and Sulphur Slag–Metal Partitions. Ironmaking Steelmaking, 1992, vol. 19(3), pp. 201–19.
22.
Zurück zum Zitat M. Hino, S. Yamamoto, and S. Ban-ya: Tetsu-to-Hagané, 1993, vol. 79(9), pp. 1039–45. M. Hino, S. Yamamoto, and S. Ban-ya: Tetsu-to-Hagané, 1993, vol. 79(9), pp. 1039–45.
23.
Zurück zum Zitat A. Hernandez, A. Romero, F. Chavez, M. Angeles, and R. D. Morales: Dephosphorization and Desulfurization Pretreatment of Molten Iron with CaO–SiO2–CaF2–FeO–Na2O Slags. ISIJ Int., 1998, vol. 38(2), pp. 126–31.CrossRef A. Hernandez, A. Romero, F. Chavez, M. Angeles, and R. D. Morales: Dephosphorization and Desulfurization Pretreatment of Molten Iron with CaO–SiO2–CaF2–FeO–Na2O Slags. ISIJ Int., 1998, vol. 38(2), pp. 126–31.CrossRef
24.
Zurück zum Zitat R. Inoue, H. Suito, and M. Ohtani: Bull. Res. Inst. Miner. Dress, Metall., 1985, vol. 40(2), pp. 199–220. R. Inoue, H. Suito, and M. Ohtani: Bull. Res. Inst. Miner. Dress, Metall., 1985, vol. 40(2), pp. 199–220.
25.
Zurück zum Zitat H. Suito and R. Inoue: Tetsu-to-Hagané, 1983, vol. 69(2), pp. A25–A28. H. Suito and R. Inoue: Tetsu-to-Hagané, 1983, vol. 69(2), pp. A25–A28.
26.
Zurück zum Zitat X.M. Yang, Z.C. Guo, D.G. Wang, and Y.S. Xie: Iron Steel, 1996, vol. 31(suppl.), pp. 25–31. X.M. Yang, Z.C. Guo, D.G. Wang, and Y.S. Xie: Iron Steel, 1996, vol. 31(suppl.), pp. 25–31.
27.
Zurück zum Zitat X.M. Yang, G.M. Chai, M. Zhang, J.Y. Li, Q. Liang, and J. Zhang: Unpublished research, 2014. X.M. Yang, G.M. Chai, M. Zhang, J.Y. Li, Q. Liang, and J. Zhang: Unpublished research, 2014.
29.
Zurück zum Zitat X.M. Yang, J.Y. Li, M. Zhang, and J. Zhang: Unpublished research, 2014. X.M. Yang, J.Y. Li, M. Zhang, and J. Zhang: Unpublished research, 2014.
30.
Zurück zum Zitat X. M. Yang, J. S. Jiao, R. C. Ding, C. B. Shi, and H. J. Guo: A Thermodynamic Model for Calculating Sulphur Distribution Ratio between CaO–SiO2–MgO–Al2O3 Ironmaking Slags and Carbon Saturated Hot Metal Based on the Ion and Molecule Coexistence Theory. ISIJ Int., 2009, vol. 49(12), pp. 1828–37.CrossRef X. M. Yang, J. S. Jiao, R. C. Ding, C. B. Shi, and H. J. Guo: A Thermodynamic Model for Calculating Sulphur Distribution Ratio between CaO–SiO2–MgO–Al2O3 Ironmaking Slags and Carbon Saturated Hot Metal Based on the Ion and Molecule Coexistence Theory. ISIJ Int., 2009, vol. 49(12), pp. 1828–37.CrossRef
31.
Zurück zum Zitat C. B. Shi, X. M. Yang, J. S. Jiao, C. Li, and H. J. Guo: A Sulphide Capacity Prediction Model of CaO–SiO2–MgO–Al2O3 Ironmaking Slags Based on the Ion and Molecule Coexistence Theory. ISIJ Int., 2010, vol. 50(10), pp. 1362–72.CrossRef C. B. Shi, X. M. Yang, J. S. Jiao, C. Li, and H. J. Guo: A Sulphide Capacity Prediction Model of CaO–SiO2–MgO–Al2O3 Ironmaking Slags Based on the Ion and Molecule Coexistence Theory. ISIJ Int., 2010, vol. 50(10), pp. 1362–72.CrossRef
32.
Zurück zum Zitat X. M. Yang, C. B. Shi, M. Zhang, G. M. Chai, and F. Wang: A Thermodynamic Model of Sulfur Distribution Ratio between CaO–SiO2–MgO–FeO–MnO–Al2O3 Slags and Molten Steel during LF Refining Process Based on the Ion and Molecule Coexistence Theory. Metall. Mater. Trans. B, 2011, vol. 42B(6), pp. 1150–80.CrossRef X. M. Yang, C. B. Shi, M. Zhang, G. M. Chai, and F. Wang: A Thermodynamic Model of Sulfur Distribution Ratio between CaO–SiO2–MgO–FeO–MnO–Al2O3 Slags and Molten Steel during LF Refining Process Based on the Ion and Molecule Coexistence Theory. Metall. Mater. Trans. B, 2011, vol. 42B(6), pp. 1150–80.CrossRef
33.
Zurück zum Zitat X. M. Yang, C. B. Shi, M. Zhang, G. M. Chai, and J. Zhang: A Sulfide Capacity Prediction Model of CaO–SiO2–MgO–FeO–MnO–Al2O3 Slags during LF Refining Process Based on the Ion and Molecule Coexistence Theory. Metall. Mater. Trans. B, 2012, vol. 43B(2), pp. 241–66.CrossRef X. M. Yang, C. B. Shi, M. Zhang, G. M. Chai, and J. Zhang: A Sulfide Capacity Prediction Model of CaO–SiO2–MgO–FeO–MnO–Al2O3 Slags during LF Refining Process Based on the Ion and Molecule Coexistence Theory. Metall. Mater. Trans. B, 2012, vol. 43B(2), pp. 241–66.CrossRef
34.
Zurück zum Zitat X. M. Yang, J. P. Duan, C. B. Shi, M. Zhang, Y. L Zhang, and J. C. Wang: A Thermodynamic Model of Phosphorus Distribution Ratio between CaO–SiO2–MgO–FeO–Fe2O3–MnO–Al2O3–P2O5 Slags and Molten Steel during Top–Bottom Combined Blown Converter Steelmaking Process Based on the Ion and Molecule Coexistence Theory. Metall. Mater. Trans. B, 2011, vol. 42B(4), pp. 738–70.CrossRef X. M. Yang, J. P. Duan, C. B. Shi, M. Zhang, Y. L Zhang, and J. C. Wang: A Thermodynamic Model of Phosphorus Distribution Ratio between CaO–SiO2–MgO–FeO–Fe2O3–MnO–Al2O3–P2O5 Slags and Molten Steel during Top–Bottom Combined Blown Converter Steelmaking Process Based on the Ion and Molecule Coexistence Theory. Metall. Mater. Trans. B, 2011, vol. 42B(4), pp. 738–70.CrossRef
35.
Zurück zum Zitat X. M. Yang, C. B. Shi, M. Zhang, J. P. Duan, and J. Zhang: A Thermodynamic Model of Phosphate Capacity for CaO–SiO2–MgO–FeO–Fe2O3–MnO–Al2O3–P2O5 Slags Equilibrated with Molten Steel during a Top–Bottom Combined Blown Converter Steelmaking Process Based on the Ion and Molecule Coexistence Theory. Metall. Mater. Trans. B, 2011, vol. 42B(5), pp. 951–776.CrossRef X. M. Yang, C. B. Shi, M. Zhang, J. P. Duan, and J. Zhang: A Thermodynamic Model of Phosphate Capacity for CaO–SiO2–MgO–FeO–Fe2O3–MnO–Al2O3–P2O5 Slags Equilibrated with Molten Steel during a Top–Bottom Combined Blown Converter Steelmaking Process Based on the Ion and Molecule Coexistence Theory. Metall. Mater. Trans. B, 2011, vol. 42B(5), pp. 951–776.CrossRef
36.
Zurück zum Zitat X. M. Yang, C. B. Shi, M. Zhang and J. Zhang: A Thermodynamic Model for Prediction of Iron Oxide Activity in Some FeO–Containing Slag Systems. Steel Res. Int., 2012, vol. 83(3), pp. 244–58.CrossRef X. M. Yang, C. B. Shi, M. Zhang and J. Zhang: A Thermodynamic Model for Prediction of Iron Oxide Activity in Some FeO–Containing Slag Systems. Steel Res. Int., 2012, vol. 83(3), pp. 244–58.CrossRef
37.
Zurück zum Zitat X. M. Yang, M. Zhang, J. L. Zhang, P. C. Li, J. Y. Li, and J. Zhang: Representation of Oxidation Ability for Metallurgical Slags Based on the Ion and Molecule Coexistence Theory. Steel Res. Int., 2014, vol. 85(3), pp. 347–75.CrossRef X. M. Yang, M. Zhang, J. L. Zhang, P. C. Li, J. Y. Li, and J. Zhang: Representation of Oxidation Ability for Metallurgical Slags Based on the Ion and Molecule Coexistence Theory. Steel Res. Int., 2014, vol. 85(3), pp. 347–75.CrossRef
38.
Zurück zum Zitat J. Zhang: Computational Thermodynamics of Metallurgical Melts and Solutions, Metallurgical Industry Press, Beijing, China, 2007. J. Zhang: Computational Thermodynamics of Metallurgical Melts and Solutions, Metallurgical Industry Press, Beijing, China, 2007.
39.
Zurück zum Zitat F. D. Richardson and C. J. B. Fincham: Sulphur in Silicate and Aluminate Slags. J. Iron Steel Inst., 1954, vol. 178(1), pp. 4–15. F. D. Richardson and C. J. B. Fincham: Sulphur in Silicate and Aluminate Slags. J. Iron Steel Inst., 1954, vol. 178(1), pp. 4–15.
40.
Zurück zum Zitat C. J. B. Fincham and F. D. Richardson: The Behaviour of Sulphur in Silicate and Aluminate Melts. Proc. R. Soc. Lond. A, 1954, vol. 223A, pp. 40–62.CrossRef C. J. B. Fincham and F. D. Richardson: The Behaviour of Sulphur in Silicate and Aluminate Melts. Proc. R. Soc. Lond. A, 1954, vol. 223A, pp. 40–62.CrossRef
41.
Zurück zum Zitat K.L. Fetters and J. Chipman: Equilibria of Liquid Iron Slags of the System CaO–MgO–FeO–SiO2. Trans. AIME, 1941, vol. 145, pp. 95–112. K.L. Fetters and J. Chipman: Equilibria of Liquid Iron Slags of the System CaO–MgO–FeO–SiO2. Trans. AIME, 1941, vol. 145, pp. 95–112.
42.
Zurück zum Zitat L. S. Darken and B. M. Larsen: Distribution of Manganese and of Sulphur between Slag and Metal in the Open–hearth Furnace. Trans. AIME, 1942, vol. 150, pp. 87–112. L. S. Darken and B. M. Larsen: Distribution of Manganese and of Sulphur between Slag and Metal in the Open–hearth Furnace. Trans. AIME, 1942, vol. 150, pp. 87–112.
43.
Zurück zum Zitat N. J. Grant and J. Chipman: An Equilibrium Study of the Distribution of Phosphorus between Liquid Iron and Basic Slags. Trans. AIME, 1946, vol. 167, pp. 134–54. N. J. Grant and J. Chipman: An Equilibrium Study of the Distribution of Phosphorus between Liquid Iron and Basic Slags. Trans. AIME, 1946, vol. 167, pp. 134–54.
44.
Zurück zum Zitat G. G. Hatch and J. Chipman: Sulphur Equilibria between Iron Blast Furnace Slags and Metal. Trans. AIME, 1949, vol. 185, pp. 274–84. G. G. Hatch and J. Chipman: Sulphur Equilibria between Iron Blast Furnace Slags and Metal. Trans. AIME, 1949, vol. 185, pp. 274–84.
45.
Zurück zum Zitat R. Rocca, N. J. Grant, and J. Chipman: Distribution of Sulphur between Liquid Iron and Slags of Low Iron–Oxide Concentrations. Trans. AIME, 1951, vol. 191, pp. 319–26. R. Rocca, N. J. Grant, and J. Chipman: Distribution of Sulphur between Liquid Iron and Slags of Low Iron–Oxide Concentrations. Trans. AIME, 1951, vol. 191, pp. 319–26.
46.
Zurück zum Zitat N. J. Grant, U. Kalling, and J. Chipman: Effects of Manganese and Its Oxide on Desulphurization by Blast–Furnace Type Slags. Trans. AIME, 1951, vol. 191, pp. 666–71. N. J. Grant, U. Kalling, and J. Chipman: Effects of Manganese and Its Oxide on Desulphurization by Blast–Furnace Type Slags. Trans. AIME, 1951, vol. 191, pp. 666–71.
47.
Zurück zum Zitat J. Taylor and J. J. Stobo: The Sulphur Distribution Reaction between Blast–Furnace Slag Metal. J. Iron Steel Inst., 1954, vol. 180(4), pp. 360–67. J. Taylor and J. J. Stobo: The Sulphur Distribution Reaction between Blast–Furnace Slag Metal. J. Iron Steel Inst., 1954, vol. 180(4), pp. 360–67.
48.
Zurück zum Zitat E.T. Turkdogan and T. Pearson: Report SM/C/41/55, British Iron and Steel Research Association, 1955, pp. 1–6. E.T. Turkdogan and T. Pearson: Report SM/C/41/55, British Iron and Steel Research Association, 1955, pp. 1–6.
49.
Zurück zum Zitat G.R.St. Pierre and J. Chipman: J. Met., 1956, vol. 8(10), pp. 1474–83. G.R.St. Pierre and J. Chipman: J. Met., 1956, vol. 8(10), pp. 1474–83.
50.
Zurück zum Zitat P. T. Carter and T. G. Macfarlance: Thermodynamics of Slag Systems. J. Iron Steel Inst., 1957, vol. 185(1), pp. 54–66. P. T. Carter and T. G. Macfarlance: Thermodynamics of Slag Systems. J. Iron Steel Inst., 1957, vol. 185(1), pp. 54–66.
51.
Zurück zum Zitat M. R. Kalyanram, T. G. Macfarlane, and H. B. Bell: The Activity of Calcium Oxide in Slags in the Systems CaO–MgO–SiO2, CaO–Al2O3–SiO2, and CaO–MgO–Al2O3–SiO2 at 1500°C. J. Iron Steel Inst., 1960, vol. 195(1), pp. 58–64. M. R. Kalyanram, T. G. Macfarlane, and H. B. Bell: The Activity of Calcium Oxide in Slags in the Systems CaO–MgO–SiO2, CaO–Al2O3–SiO2, and CaO–MgO–Al2O3–SiO2 at 1500°C. J. Iron Steel Inst., 1960, vol. 195(1), pp. 58–64.
52.
Zurück zum Zitat K. P. Abraham, M. W. Davies, and F. D. Richardson: Sulphide Capacities of Silicate Melts. J. Iron Steel Inst., 1960, vol. 196(3), pp. 309–17. K. P. Abraham, M. W. Davies, and F. D. Richardson: Sulphide Capacities of Silicate Melts. J. Iron Steel Inst., 1960, vol. 196(3), pp. 309–17.
53.
Zurück zum Zitat J. Cameron, T. B. Gibbons, and J. Taylor: Calcium Sulphide Solubilities and Lime Activities in the Lime–Alumina–Silica System. J. Iron Steel Inst., 1966, vol. 204(12), pp. 1223–28. J. Cameron, T. B. Gibbons, and J. Taylor: Calcium Sulphide Solubilities and Lime Activities in the Lime–Alumina–Silica System. J. Iron Steel Inst., 1966, vol. 204(12), pp. 1223–28.
54.
Zurück zum Zitat A. S. Venkatradi and H. B. Bell: Sulphur Partition between Slag and Metal in the Iron Blast Furnace. J. Iron Steel Inst., 1969, vol. 207(8), pp. 1110–13. A. S. Venkatradi and H. B. Bell: Sulphur Partition between Slag and Metal in the Iron Blast Furnace. J. Iron Steel Inst., 1969, vol. 207(8), pp. 1110–13.
55.
Zurück zum Zitat G. J. W. Kor: Effect of Fluorspar and other Fluxes on Slag–metal Equilibria Involving Phosphorus and Sulfur. Metall. Trans. B, 1977, vol. 8B(1), pp. 107–13.CrossRef G. J. W. Kor: Effect of Fluorspar and other Fluxes on Slag–metal Equilibria Involving Phosphorus and Sulfur. Metall. Trans. B, 1977, vol. 8B(1), pp. 107–13.CrossRef
56.
Zurück zum Zitat J. Shim and S. Ban-ya: Tetsu-to-Hagané, 1982, vol. 68(2), pp. 251–60. J. Shim and S. Ban-ya: Tetsu-to-Hagané, 1982, vol. 68(2), pp. 251–60.
57.
Zurück zum Zitat K. Kärsrud: Sulphide Capacities in TiO2 Containing Slags. Scan. J. Metall., 1984, vol. 13B(3), pp. 173–75. K. Kärsrud: Sulphide Capacities in TiO2 Containing Slags. Scan. J. Metall., 1984, vol. 13B(3), pp. 173–75.
58.
Zurück zum Zitat B. Ozturk and E. T. Turkdogan: Equilibrium S Distribution between Molten Calcium Aluminate and Steel: Part 1 CaS–CaO–Al2O3 Melts Equilibrated with Liquid Fe Containing Al and S. Metal Science, 1984, vol. 18(6), pp. 299–305.CrossRef B. Ozturk and E. T. Turkdogan: Equilibrium S Distribution between Molten Calcium Aluminate and Steel: Part 1 CaS–CaO–Al2O3 Melts Equilibrated with Liquid Fe Containing Al and S. Metal Science, 1984, vol. 18(6), pp. 299–305.CrossRef
59.
Zurück zum Zitat K. Kärsrud: Sulphide Capacities of Synthetic Blast Furnace Slags at 1500°C. Scan. J. Metall., 1984, vol. 13B(3), pp. 144–50. K. Kärsrud: Sulphide Capacities of Synthetic Blast Furnace Slags at 1500°C. Scan. J. Metall., 1984, vol. 13B(3), pp. 144–50.
60.
Zurück zum Zitat T. Tsao and H. G. Katayama: Sulphur Distribution between Liquid Iron and CaO–MgO–Al2O3–SiO2 Slags Used for Ladle Refining, Trans. ISIJ, 1986, vol. 26(8), pp. 717–23.CrossRef T. Tsao and H. G. Katayama: Sulphur Distribution between Liquid Iron and CaO–MgO–Al2O3–SiO2 Slags Used for Ladle Refining, Trans. ISIJ, 1986, vol. 26(8), pp. 717–23.CrossRef
61.
Zurück zum Zitat A. H. Chan and R. J. Fruehan: The Sulfur Partition Ratio and the Sulfide Capacity of Na2O–SiO2 Slags at 1200°C. Metall. Trans. B, 1986, vol. 17B(3), pp. 491–96.CrossRef A. H. Chan and R. J. Fruehan: The Sulfur Partition Ratio and the Sulfide Capacity of Na2O–SiO2 Slags at 1200°C. Metall. Trans. B, 1986, vol. 17B(3), pp. 491–96.CrossRef
62.
Zurück zum Zitat R. Berryman, I. D. Sommerville, and F. Ishii: Iron Steelmak. 1987, vol. 14(7), pp. 49–54. R. Berryman, I. D. Sommerville, and F. Ishii: Iron Steelmak. 1987, vol. 14(7), pp. 49–54.
63.
Zurück zum Zitat F. Tsukihashi, M. Nakamura, T. Orimoto, and N. Sano: Tetsu-to-Hagané, 1990, vol. 76(10), pp. 1664–71. F. Tsukihashi, M. Nakamura, T. Orimoto, and N. Sano: Tetsu-to-Hagané, 1990, vol. 76(10), pp. 1664–71.
64.
Zurück zum Zitat M. M. Nzotta, D. Sichen, and S. Seetharaman: A Study of the Sulfide Capacities of Iron-Oxide Containing Slags. Metall. Mater. Trans. B, 1999, vol. 30B(5), pp. 909–920.CrossRef M. M. Nzotta, D. Sichen, and S. Seetharaman: A Study of the Sulfide Capacities of Iron-Oxide Containing Slags. Metall. Mater. Trans. B, 1999, vol. 30B(5), pp. 909–920.CrossRef
65.
Zurück zum Zitat K. Susaki, M. Maeda, and N. Sano: Sulfide Capacity of CaO–CaF2–SiO2 Slags. Metall. Trans. B, 1990, vol. 21B(1), pp. 121–129.CrossRef K. Susaki, M. Maeda, and N. Sano: Sulfide Capacity of CaO–CaF2–SiO2 Slags. Metall. Trans. B, 1990, vol. 21B(1), pp. 121–129.CrossRef
66.
Zurück zum Zitat I. P. Rachev, F. Tsukihashi, and N. Sano: The Thermodynamic Behavior of Sulfur in BaO–BaF2 Slags. Metall. Trans. B, 1991, vol. 22B(3), pp. 333–38.CrossRef I. P. Rachev, F. Tsukihashi, and N. Sano: The Thermodynamic Behavior of Sulfur in BaO–BaF2 Slags. Metall. Trans. B, 1991, vol. 22B(3), pp. 333–38.CrossRef
67.
Zurück zum Zitat S. R. Simeonov, R. Sridhar, J. M. Toguri: Sulfide capacities of fayalite-base slags. Metall. Mater. Trans. B, 1995, vol. 26B(2), pp. 325–34.CrossRef S. R. Simeonov, R. Sridhar, J. M. Toguri: Sulfide capacities of fayalite-base slags. Metall. Mater. Trans. B, 1995, vol. 26B(2), pp. 325–34.CrossRef
68.
Zurück zum Zitat T. Kobayashi, K. Morita, and N. Sano: Thermodynamics of Sulfur in the BaO–MnO–SiO2 Flux System. Metall. Mater. Trans. B, 1996, vol. 27B(4), pp. 652–57.CrossRef T. Kobayashi, K. Morita, and N. Sano: Thermodynamics of Sulfur in the BaO–MnO–SiO2 Flux System. Metall. Mater. Trans. B, 1996, vol. 27B(4), pp. 652–57.CrossRef
69.
Zurück zum Zitat Y. Taniguchi, L. J. Wang, N. Sano, and S. Seetharaman: Sulfide Capacities of CaO-Al2O3-SiO2 Slags in the Temperature Range 1673 K to 1773 K (1400°C to 1500°C). Metall. Mater. Trans. B, 2012, vol. 43B(3), pp. 477–84.CrossRef Y. Taniguchi, L. J. Wang, N. Sano, and S. Seetharaman: Sulfide Capacities of CaO-Al2O3-SiO2 Slags in the Temperature Range 1673 K to 1773 K (1400°C to 1500°C). Metall. Mater. Trans. B, 2012, vol. 43B(3), pp. 477–84.CrossRef
70.
Zurück zum Zitat K. D. Kim, W. W. Huh, and D. J. Min: Effect of FeO and CaO on the Sulfide Capacity of the Ferronickel Smelting Slag. Metall. Mater. Trans. B, 2014, vol. 45B(3), pp. 889–96.CrossRef K. D. Kim, W. W. Huh, and D. J. Min: Effect of FeO and CaO on the Sulfide Capacity of the Ferronickel Smelting Slag. Metall. Mater. Trans. B, 2014, vol. 45B(3), pp. 889–96.CrossRef
71.
Zurück zum Zitat S. K. Wei: The Effect of Iron Oxide Content in Molten Slags Upon Desulphurization. Acta Metallurgica Sinica, 1964, vol. 7(2), pp. 157–64. S. K. Wei: The Effect of Iron Oxide Content in Molten Slags Upon Desulphurization. Acta Metallurgica Sinica, 1964, vol. 7(2), pp. 157–64.
72.
Zurück zum Zitat X. F. Zhang and J. M. Toguri: The Equilibrium Distribution of Sulphur between Basic Slags and Steel. Can. Metall. Q., 1987, vol. 26(2), pp. 117–22.CrossRef X. F. Zhang and J. M. Toguri: The Equilibrium Distribution of Sulphur between Basic Slags and Steel. Can. Metall. Q., 1987, vol. 26(2), pp. 117–22.CrossRef
73.
Zurück zum Zitat X. M. Yang, T. Z. Liu, Z. C. Guo, X. P. YU, and D. G. Wang: Correlation between Sulphide Capacity Index and Slag Basicity. J Iron Steel Res., 1995, vol. 7(6), pp. 1–8. X. M. Yang, T. Z. Liu, Z. C. Guo, X. P. YU, and D. G. Wang: Correlation between Sulphide Capacity Index and Slag Basicity. J Iron Steel Res., 1995, vol. 7(6), pp. 1–8.
74.
Zurück zum Zitat H. Suito and R. Inoue: Tetsu-to-Hagané, 1983, vol. 69(2), pp. A25–A28. H. Suito and R. Inoue: Tetsu-to-Hagané, 1983, vol. 69(2), pp. A25–A28.
75.
Zurück zum Zitat R. Nagabayashi, M. Hino, and S. Ban-ya: Tetsu-to-Hagané, 1990, vol. 76(2), pp, 183–90. R. Nagabayashi, M. Hino, and S. Ban-ya: Tetsu-to-Hagané, 1990, vol. 76(2), pp, 183–90.
76.
Zurück zum Zitat D. J. Sosinsky and I. D. Sommerville: The Composition and Temperature Dependence of the Sulfide Capacity of Metallurgical Slags. Metall. Trans. B, 1986, vol. 17B(2), pp. 331–37.CrossRef D. J. Sosinsky and I. D. Sommerville: The Composition and Temperature Dependence of the Sulfide Capacity of Metallurgical Slags. Metall. Trans. B, 1986, vol. 17B(2), pp. 331–37.CrossRef
77.
Zurück zum Zitat D. Sichen, R. Nilsson, and S. Seetharaman: A Mathematical Model for Estimation of Sulphide Capacities of Multi–component Slags. Steel Res., 1995, vol. 66(11), pp. 458–62. D. Sichen, R. Nilsson, and S. Seetharaman: A Mathematical Model for Estimation of Sulphide Capacities of Multi–component Slags. Steel Res., 1995, vol. 66(11), pp. 458–62.
78.
Zurück zum Zitat M. M. Nzotta, D. Sichen, and S. Seetharaman: Sulphide Capacities in Some Multi Component Slag Systems. ISIJ Int., 1998, vol. 38(11), pp. 1170–79.CrossRef M. M. Nzotta, D. Sichen, and S. Seetharaman: Sulphide Capacities in Some Multi Component Slag Systems. ISIJ Int., 1998, vol. 38(11), pp. 1170–79.CrossRef
79.
Zurück zum Zitat M. M. Nzotta, D. Sichen, and S. Seetharaman: Sulphide Capacities of “FeO”–SiO2, CaO–“FeO”, and “FeO”–MnO Slags. ISIJ Int., 1999, vol. 39(7), pp. 657–63.CrossRef M. M. Nzotta, D. Sichen, and S. Seetharaman: Sulphide Capacities of “FeO”–SiO2, CaO–“FeO”, and “FeO”–MnO Slags. ISIJ Int., 1999, vol. 39(7), pp. 657–63.CrossRef
80.
Zurück zum Zitat Y. Taniguchi, N. Sano, and S. Seetharaman: Sulphide Capacities of CaO–Al2O3–SiO2–MgO–MnO Slags in the Temperature Range 1673–1773K. ISIJ Int., 2009, vol. 49(2), pp. 156–63.CrossRef Y. Taniguchi, N. Sano, and S. Seetharaman: Sulphide Capacities of CaO–Al2O3–SiO2–MgO–MnO Slags in the Temperature Range 1673–1773K. ISIJ Int., 2009, vol. 49(2), pp. 156–63.CrossRef
81.
Zurück zum Zitat G. H. Zhang, K. C. Chou, and U. Pal: Estimation of Sulfide Capacities of Multicomponent Slags using Optical Basicity. ISIJ Int., 2013, vol. 53(5), pp. 761–767.CrossRef G. H. Zhang, K. C. Chou, and U. Pal: Estimation of Sulfide Capacities of Multicomponent Slags using Optical Basicity. ISIJ Int., 2013, vol. 53(5), pp. 761–767.CrossRef
82.
Zurück zum Zitat Y. B. Kang and A. D. Pelton: Thermodynamic Model and Database for Sulfides Dissolved in Molten Oxide Slags. Metall. Mater. Trans. B, 2009, vol. 40B(6), pp. 979–94.CrossRef Y. B. Kang and A. D. Pelton: Thermodynamic Model and Database for Sulfides Dissolved in Molten Oxide Slags. Metall. Mater. Trans. B, 2009, vol. 40B(6), pp. 979–94.CrossRef
83.
Zurück zum Zitat A. D. Pelton, G. Eriksson, and A. R. Serrano: Calculation of Sulfide Capacities of Multicomponent Slags. Metall. Trans. B, 1993, vol. 24(5), pp. 817–25.CrossRef A. D. Pelton, G. Eriksson, and A. R. Serrano: Calculation of Sulfide Capacities of Multicomponent Slags. Metall. Trans. B, 1993, vol. 24(5), pp. 817–25.CrossRef
84.
Zurück zum Zitat R. G. Reddy and M. Blander: Modeling of Sulfide Capacities of Silicate Melts. Metall. Trans. B, 1987, vol. 18B(3), pp. 591–96.CrossRef R. G. Reddy and M. Blander: Modeling of Sulfide Capacities of Silicate Melts. Metall. Trans. B, 1987, vol. 18B(3), pp. 591–96.CrossRef
85.
Zurück zum Zitat R. G. Reddy and M. Blander: Sulfide Capacities of MnO–SiO2 Slags. Metall. Trans. B, 1989, vol. 20B(2), pp. 137–40.CrossRef R. G. Reddy and M. Blander: Sulfide Capacities of MnO–SiO2 Slags. Metall. Trans. B, 1989, vol. 20B(2), pp. 137–40.CrossRef
86.
Zurück zum Zitat R. G. Reddy and W. Zhao: Sulfide Capacities of Na2O–SiO2 Melts. Metall. Mater. Trans. B, 1995, vol. 26B(5), pp. 925–928.CrossRef R. G. Reddy and W. Zhao: Sulfide Capacities of Na2O–SiO2 Melts. Metall. Mater. Trans. B, 1995, vol. 26B(5), pp. 925–928.CrossRef
87.
Zurück zum Zitat R. Moretti and G. Ottonello: A Polymeric Approach to the Sulfide Capacity of Silicate Slags and Melts. Metall. Mater. Trans. B, 2003, vol. 34B(4), pp. 399–410.CrossRef R. Moretti and G. Ottonello: A Polymeric Approach to the Sulfide Capacity of Silicate Slags and Melts. Metall. Mater. Trans. B, 2003, vol. 34B(4), pp. 399–410.CrossRef
88.
Zurück zum Zitat Y. J. Kim, D. H. Woo, H. Gaye, H. G. Lee, and Y. B. Kang: Thermodynamics of MnO–SiO2–Al2O3–MnS Liquid Oxysulfide: Experimental and Thermodynamic Modeling. Metall. Mater. Trans. B, 2011, vol. 42B(3), pp. 535–45.CrossRef Y. J. Kim, D. H. Woo, H. Gaye, H. G. Lee, and Y. B. Kang: Thermodynamics of MnO–SiO2–Al2O3–MnS Liquid Oxysulfide: Experimental and Thermodynamic Modeling. Metall. Mater. Trans. B, 2011, vol. 42B(3), pp. 535–45.CrossRef
89.
Zurück zum Zitat J. X. Chen: Handbook of Common Figures, Tables and Data for Steelmaking, 2nd ed., Metallurgical Industry Press. Beijing, 2010. J. X. Chen: Handbook of Common Figures, Tables and Data for Steelmaking, 2nd ed., Metallurgical Industry Press. Beijing, 2010.
90.
91.
Zurück zum Zitat The Japan Society for the Promotion of Science, The 19th Committee on Steelmaking: Steelmaking Data Sourcebook, Gordon and Breach Science Publishers, New York, NY, 1988. The Japan Society for the Promotion of Science, The 19th Committee on Steelmaking: Steelmaking Data Sourcebook, Gordon and Breach Science Publishers, New York, NY, 1988.
92.
Zurück zum Zitat S. K. Wei: Thermodynamics of Metallurgical Processes, Science Press, Beijing, 2010. S. K. Wei: Thermodynamics of Metallurgical Processes, Science Press, Beijing, 2010.
93.
Zurück zum Zitat J. Y. Zhang: Metallurgical Physicochemistry. Metallurgical Industry Press, Beijing, 2004. J. Y. Zhang: Metallurgical Physicochemistry. Metallurgical Industry Press, Beijing, 2004.
94.
Zurück zum Zitat X. H. Huang: Principles of Ironmaking and Steelmaking (3rd edition), Metallurgical Industry Press, Beijing, 2005. X. H. Huang: Principles of Ironmaking and Steelmaking (3rd edition), Metallurgical Industry Press, Beijing, 2005.
95.
Zurück zum Zitat G. K. Sigworth and J. F. Elliott: The Thermodynamics of Liquid Dilute Iron Alloys. Met. Sci., 1974, vol. 8(9), pp. 298–310.CrossRef G. K. Sigworth and J. F. Elliott: The Thermodynamics of Liquid Dilute Iron Alloys. Met. Sci., 1974, vol. 8(9), pp. 298–310.CrossRef
96.
Zurück zum Zitat M. Andersson: Ph.D. Thesis, Division of Metallurgy, KTH, Sweden, 2000. ISBN:91–7170–621–6. M. Andersson: Ph.D. Thesis, Division of Metallurgy, KTH, Sweden, 2000. ISBN:91–7170–621–6.
97.
Zurück zum Zitat M. A. T. Andersson, P. G. Jönsson, and M. M. Nzotta: Application of the Sulphide Capacity Concept on High–basicity Ladle Slags Used in Bearing–steel Production. ISIJ Int., 1999, vol. 39(11), pp. 1140–49.CrossRef M. A. T. Andersson, P. G. Jönsson, and M. M. Nzotta: Application of the Sulphide Capacity Concept on High–basicity Ladle Slags Used in Bearing–steel Production. ISIJ Int., 1999, vol. 39(11), pp. 1140–49.CrossRef
98.
Zurück zum Zitat E. T. Turkdogan: Assessment of P2O5 Activity Coefficients in Molten Slags. ISIJ Int., 2000, vol. 40(10), pp. 964–970.CrossRef E. T. Turkdogan: Assessment of P2O5 Activity Coefficients in Molten Slags. ISIJ Int., 2000, vol. 40(10), pp. 964–970.CrossRef
99.
Zurück zum Zitat J. Lee and K. Morita: Dynamic Interfacial Phenomena between Gas, Liquid Iron and Solid CaO during Desulfurization. ISIJ Int., 2004, vol. 44(2), pp. 235–242.CrossRef J. Lee and K. Morita: Dynamic Interfacial Phenomena between Gas, Liquid Iron and Solid CaO during Desulfurization. ISIJ Int., 2004, vol. 44(2), pp. 235–242.CrossRef
100.
Zurück zum Zitat A. Shankar, M. Gornerup, A. K. Lahiri, and S. Seetharaman: Sulfide Capacity of High Alumina Blast Furnace Slags. Metall. Mater. Trans. B, 2006, vol. 37B(6), pp. 941–47.CrossRef A. Shankar, M. Gornerup, A. K. Lahiri, and S. Seetharaman: Sulfide Capacity of High Alumina Blast Furnace Slags. Metall. Mater. Trans. B, 2006, vol. 37B(6), pp. 941–47.CrossRef
101.
Zurück zum Zitat K. C. Mills and S. Sridhar: Viscosities of Ironmaking and Steelmaking Slags. Ironmaking Steelmaking, 1999, vol. 26(4), pp. 262–68.CrossRef K. C. Mills and S. Sridhar: Viscosities of Ironmaking and Steelmaking Slags. Ironmaking Steelmaking, 1999, vol. 26(4), pp. 262–68.CrossRef
102.
Zurück zum Zitat T. Nakamura, Y. Ueda, and J.M. Toguri: Proc. Third Int. Conf. Metall. Slags Fluxes, University of Strathclyde, The Institute of Metals, London, 27–29 June 1988, pp. 146–149. T. Nakamura, Y. Ueda, and J.M. Toguri: Proc. Third Int. Conf. Metall. Slags Fluxes, University of Strathclyde, The Institute of Metals, London, 27–29 June 1988, pp. 146–149.
Metadaten
Titel
Prediction Model of Sulfide Capacity for CaO-FeO-Fe2O3-Al2O3-P2O5 Slags in a Large Variation Range of Oxygen Potential Based on the Ion and Molecule Coexistence Theory
verfasst von
Xue-Min Yang
Jin-Yan Li
Meng Zhang
Guo-Min Chai
Jian Zhang
Publikationsdatum
01.12.2014
Verlag
Springer US
Erschienen in
Metallurgical and Materials Transactions B / Ausgabe 6/2014
Print ISSN: 1073-5615
Elektronische ISSN: 1543-1916
DOI
https://doi.org/10.1007/s11663-014-0122-z

Weitere Artikel der Ausgabe 6/2014

Metallurgical and Materials Transactions B 6/2014 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.