Skip to main content

2024 | OriginalPaper | Buchkapitel

Prediction of Abnormality in Kidney Function Using Classification Techniques and Fuzzy Systems

verfasst von : Mynapati Lakshmi Prasudha, Sukhavasi Vidyullatha, Yeluri Divya

Erschienen in: Advances in Data-Driven Computing and Intelligent Systems

Verlag: Springer Nature Singapore

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Kidney diseases are life threatening. Its development is prevented by early detection and vigorous management. It is important to discover such disorders at an early stage in order to extend a patient's lifespan and to classify the abnormalities in kidney function based on pathological data. The primary goal is to identify the stages of the kidney disease and check the performance for various classifiers of the model. In this paper, classification algorithms are used to find out the accuracy of the supervised data. Not all machine learning classifiers predict the accurate results because of imprecision. So, fuzzy expert system (FES) is used to deal with imprecise data. To predict the disease at an early stage and also to identify the stages of the disease, FES is used. FES has shown promising results in identifying the stages of the patients. The accuracy of the pathological data is found by using machine learning algorithms. In addition, the probability of the occurrence of the disease is found by combining various parameters and identified the stages of the patient’s disease.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
3.
Zurück zum Zitat Sivasankar E, Pradeep R, Sinandham S (2019) Identification of important biomarkers for detection of chronic kidney disease using feature selection and classification algorithms. Int J Med Eng Inform 11(4) Sivasankar E, Pradeep R, Sinandham S (2019) Identification of important biomarkers for detection of chronic kidney disease using feature selection and classification algorithms. Int J Med Eng Inform 11(4)
4.
Zurück zum Zitat Aditya K, Babita P (2020) “A novel integrated principal component analysis and support vector machines-based diagnostic system for detection of chronic kidney disease. Int J Data Anal Tech Strateg (IJDATS) 12(2) Aditya K, Babita P (2020) “A novel integrated principal component analysis and support vector machines-based diagnostic system for detection of chronic kidney disease. Int J Data Anal Tech Strateg (IJDATS) 12(2)
5.
Zurück zum Zitat Pramila A, Eswaran P (2021) An efficient oppositional crow search optimization-based deep neural network classifier for chronic kidney disease identification. Int J Innov Comput Appl (IJICA) 12(4) Pramila A, Eswaran P (2021) An efficient oppositional crow search optimization-based deep neural network classifier for chronic kidney disease identification. Int J Innov Comput Appl (IJICA) 12(4)
7.
Zurück zum Zitat Fazel Zarandi MH, Abdolkarimzadeh M (2022) Fuzzy rule based expert system to diagnose chronic kidney disease. In: Springer NAFIPS 2017 annual conference, vol 648, pp 323–328 Fazel Zarandi MH, Abdolkarimzadeh M (2022) Fuzzy rule based expert system to diagnose chronic kidney disease. In: Springer NAFIPS 2017 annual conference, vol 648, pp 323–328
8.
Zurück zum Zitat Panwong P, Iam-On N (2021) Predicting transitional interval of kidney disease stages 3 to 5 using data mining method. In: 2016 second Asian conference on defence technology (ACDT), Chiang Mai, pp 145–150 Panwong P, Iam-On N (2021) Predicting transitional interval of kidney disease stages 3 to 5 using data mining method. In: 2016 second Asian conference on defence technology (ACDT), Chiang Mai, pp 145–150
9.
Zurück zum Zitat Vijayarani S, Dhayanand S (2021) Kidney disease prediction using SVM and ANN algorithms. Int J Comput Bus Res (IJCBR) 6(2) Vijayarani S, Dhayanand S (2021) Kidney disease prediction using SVM and ANN algorithms. Int J Comput Bus Res (IJCBR) 6(2)
10.
Zurück zum Zitat Aljaaf J et al (2022)Early prediction of chronic kidney disease using machine learning supported by predictive analytics. In: 2018 IEEE congress on evolutionary computation (CEC), Rio de Janeiro, pp 1–9 Aljaaf J et al (2022)Early prediction of chronic kidney disease using machine learning supported by predictive analytics. In: 2018 IEEE congress on evolutionary computation (CEC), Rio de Janeiro, pp 1–9
11.
Zurück zum Zitat Zhang H, Hung C, Chu WC, Chiu P, Tang CY (2021) Chronic kidney disease survival prediction with artificial neural networks. In: 2018 IEEE international conference on bioinformatics and biomedicine (BIBM), Madrid, Spain, pp 1351–1356 Zhang H, Hung C, Chu WC, Chiu P, Tang CY (2021) Chronic kidney disease survival prediction with artificial neural networks. In: 2018 IEEE international conference on bioinformatics and biomedicine (BIBM), Madrid, Spain, pp 1351–1356
12.
Zurück zum Zitat Tazin N, Sabab SA, Chowdhury MT (2022) Diagnosis of Chronic Kidney disease using effective classification and feature selection technique. In: 2016 international conference on medical engineering, health informatics and technology (MediTec), Dhaka, pp 1–6 Tazin N, Sabab SA, Chowdhury MT (2022) Diagnosis of Chronic Kidney disease using effective classification and feature selection technique. In: 2016 international conference on medical engineering, health informatics and technology (MediTec), Dhaka, pp 1–6
13.
Zurück zum Zitat Kaur G, Sharma A (2022) Predict chronic kidney disease using data mining algorithms in Hadoop. In: 2017 international conference on inventive computing and informatics (ICICI), Coimbatore, pp 973–979 Kaur G, Sharma A (2022) Predict chronic kidney disease using data mining algorithms in Hadoop. In: 2017 international conference on inventive computing and informatics (ICICI), Coimbatore, pp 973–979
14.
Zurück zum Zitat Al-Hayari AYA, Al-Taee AM, Al-Taee MA (2021) Clinical decision supprot system for diagnosis and management of chronic renal failure. In: IEEE Jordan conference on applied electrical engineering and computing technologies, pp 1–6 Al-Hayari AYA, Al-Taee AM, Al-Taee MA (2021) Clinical decision supprot system for diagnosis and management of chronic renal failure. In: IEEE Jordan conference on applied electrical engineering and computing technologies, pp 1–6
15.
Zurück zum Zitat Johansson M, Buijs JOD, Song X, Waitman LR, Yu AS, Robbins DC, Hu Y, Liu M (2020) Longitudinal risk prediction of chronic kidney disease in diabetic patients using a temporal-enhanced gradient boosting machine: retrospective cohort study. JMIR Med Inform 8:e15510 [CrossRef] Johansson M, Buijs JOD, Song X, Waitman LR, Yu AS, Robbins DC, Hu Y, Liu M (2020) Longitudinal risk prediction of chronic kidney disease in diabetic patients using a temporal-enhanced gradient boosting machine: retrospective cohort study. JMIR Med Inform 8:e15510 [CrossRef]
16.
Zurück zum Zitat Katsuki T, Ono M, Koseki A, Kudo M, Haida K, Kuroda J, Makino M, Yanagiya R, Suzuki A (2018) Risk prediction of diabetic nephropathy via interpretable feature extraction from EHR using convolutional autoencoder. Stud Health Technol Inform 247:106–110 Katsuki T, Ono M, Koseki A, Kudo M, Haida K, Kuroda J, Makino M, Yanagiya R, Suzuki A (2018) Risk prediction of diabetic nephropathy via interpretable feature extraction from EHR using convolutional autoencoder. Stud Health Technol Inform 247:106–110
17.
Zurück zum Zitat Ren Y, Fei H, Liang X, Ji D, Cheng M (2021) A hybrid neural network model for predicting kidney disease in hypertension patients based on electronic health records. BMC Med Inform Decis Mak 19:131–138. [CrossRef] [PubMed] Ren Y, Fei H, Liang X, Ji D, Cheng M (2021) A hybrid neural network model for predicting kidney disease in hypertension patients based on electronic health records. BMC Med Inform Decis Mak 19:131–138. [CrossRef] [PubMed]
18.
Zurück zum Zitat Dilli Arasu S, Thirumalaiselvi R (2021) Review of chronic kidney disease based on data mining techniques. Int J Appl Eng Res ISSN 0973–4562 12(23):13498–13505 Dilli Arasu S, Thirumalaiselvi R (2021) Review of chronic kidney disease based on data mining techniques. Int J Appl Eng Res ISSN 0973–4562 12(23):13498–13505
19.
Zurück zum Zitat Ramya S, Radha N (2022) Diagnosis of chronic kidney disease using machine learning algorithms. Proc Int J Innov Res Comput Commun Eng 4(1) Ramya S, Radha N (2022) Diagnosis of chronic kidney disease using machine learning algorithms. Proc Int J Innov Res Comput Commun Eng 4(1)
20.
Zurück zum Zitat Polat H, Mehr HD, Cetin A (2021) Diagnosis of chronic kidney disease based on support vector machine by feature selection method. Springer 41(4):1–11 Polat H, Mehr HD, Cetin A (2021) Diagnosis of chronic kidney disease based on support vector machine by feature selection method. Springer 41(4):1–11
21.
Zurück zum Zitat Michie D, Spiegelhalter DJ, Taylor CC (1994) Machine learning. Neural Statistic Class 12(12) Michie D, Spiegelhalter DJ, Taylor CC (1994) Machine learning. Neural Statistic Class 12(12)
22.
Zurück zum Zitat Sebasky M, Kukla A, Leister E, Guo H, Akkina SK, El-Shahawy Y, Matas AJ, Ibrahim HN (2009) Appraisal of GFR-estimating equations following kidney donation. Am J Kidney Dis 53(6):1050–1058CrossRef Sebasky M, Kukla A, Leister E, Guo H, Akkina SK, El-Shahawy Y, Matas AJ, Ibrahim HN (2009) Appraisal of GFR-estimating equations following kidney donation. Am J Kidney Dis 53(6):1050–1058CrossRef
23.
Zurück zum Zitat Jahantigh FF (2015) Kidney diseases diagnosis by using fuzzy logic Jahantigh FF (2015) Kidney diseases diagnosis by using fuzzy logic
24.
Zurück zum Zitat Sahani R, Rout C, Badajena JC, Jena AK, Das H (2021) Classification of intrusion detection using data mining techniques. In: Progress in computing, analytics and networking, Springer, Singapore, pp 753–764 CrossRefView Record in Scopus Google Scholar[4] Sahani R, Rout C, Badajena JC, Jena AK, Das H (2021) Classification of intrusion detection using data mining techniques. In: Progress in computing, analytics and networking, Springer, Singapore, pp 753–764 CrossRefView Record in Scopus Google Scholar[4]
25.
Zurück zum Zitat Das H, Naik H, Behera HS (2020) Classification of diabetes mellitus disease (DMD): a data mining (DM) approach Progress in computing, analytics and networking, Springer, Singapore, pp 539–549 CrossRefScopus Google Scholar Das H, Naik H, Behera HS (2020) Classification of diabetes mellitus disease (DMD): a data mining (DM) approach Progress in computing, analytics and networking, Springer, Singapore, pp 539–549 CrossRefScopus Google Scholar
26.
Zurück zum Zitat Dey N, Ashour A (2016) Classification and clustering in biomedical signal processing, IGI global Hershey, Google Scholar Dey N, Ashour A (2016) Classification and clustering in biomedical signal processing, IGI global Hershey, Google Scholar
27.
Zurück zum Zitat Kamparia A, Saini G, Pandey B, Tiwari S, Gupta D, Kahnna A (2021) KDSAE: Chronic kid ney classification with multimedia data learning using deep stacked autoecnoder network. Springer, pp 1–6 Kamparia A, Saini G, Pandey B, Tiwari S, Gupta D, Kahnna A (2021) KDSAE: Chronic kid ney classification with multimedia data learning using deep stacked autoecnoder network. Springer, pp 1–6
28.
Zurück zum Zitat Hua C, Wu R, Kei C, An Wang S (2019) A cloud based fuzzy expert system for the risk assessment of chronic kidney disease. Indrescience 9(4) Hua C, Wu R, Kei C, An Wang S (2019) A cloud based fuzzy expert system for the risk assessment of chronic kidney disease. Indrescience 9(4)
29.
30.
Zurück zum Zitat Ahmed S, Tanzir Kabir M, Mehmood NT, Rehman RM (2022) Diagnosis of kidney disease using fuzzy expert system. In: IEEE The 8th international conference on software, Dhaka, pp 1–8, April, 2022. Ahmed S, Tanzir Kabir M, Mehmood NT, Rehman RM (2022) Diagnosis of kidney disease using fuzzy expert system. In: IEEE The 8th international conference on software, Dhaka, pp 1–8, April, 2022.
32.
Zurück zum Zitat Al-Hayari AYA, Al-Taee AA, Al-Taee MA (2018) Clinical decision support system for diagnosis and management of chronic renal failure. In: IEEE Jordan conference on applied electrical engineering and computing technologies, pp 1–6 Al-Hayari AYA, Al-Taee AA, Al-Taee MA (2018) Clinical decision support system for diagnosis and management of chronic renal failure. In: IEEE Jordan conference on applied electrical engineering and computing technologies, pp 1–6
33.
Zurück zum Zitat Ahmed S, Tanzir Kabir M, Mehmood NT, Rehman RM (2021) Diagnosis of kidney disease using fuzzy expert system. In: IEEE the 8th international conference on software, Dhaka, pp 1–8 Ahmed S, Tanzir Kabir M, Mehmood NT, Rehman RM (2021) Diagnosis of kidney disease using fuzzy expert system. In: IEEE the 8th international conference on software, Dhaka, pp 1–8
34.
Zurück zum Zitat Fazel Zarandi MH, Abdolkarimzadeh M (2021) Fuzzy rule based expert system to diagnose chronic kidney diseas. In: Springer NAFIPS 2017 annual conference, vol 648, pp 323–328, September, 2021. Fazel Zarandi MH, Abdolkarimzadeh M (2021) Fuzzy rule based expert system to diagnose chronic kidney diseas. In: Springer NAFIPS 2017 annual conference, vol 648, pp 323–328, September, 2021.
35.
Zurück zum Zitat Zadeh LA (1965) Fuzzy sets. Inf Control 8:338–353 Article Download PDF Scopus Google Zadeh LA (1965) Fuzzy sets. Inf Control 8:338–353 Article Download PDF Scopus Google
36.
Zurück zum Zitat Himansu D, Bighnaraj NHS, Behera C (2020) Medical disease analysis using neuro-fuzzy with feature extraction model for classification. Inf Med Unlocked 18(1–12):100288. Inform Med Unlock 18:100299 Himansu D, Bighnaraj NHS, Behera C (2020) Medical disease analysis using neuro-fuzzy with feature extraction model for classification. Inf Med Unlocked 18(1–12):100288. Inform Med Unlock 18:100299
37.
Zurück zum Zitat Hua C, Kei Chiu R, An Wang S (2015) A cloud based fuzzy expert system for the risk assessment of chronic kidney disease. Indrescience 9(4) Hua C, Kei Chiu R, An Wang S (2015) A cloud based fuzzy expert system for the risk assessment of chronic kidney disease. Indrescience 9(4)
39.
Zurück zum Zitat Norouzi J, Yadollahpour A, Mirbagheri SA, Mazdeh MM, Hosseini SA (2022) Predicting renal failure progression in chronic kidney disease integrated fuzzy expert system. Hindawi Comput Mathematic Methods Med 2016:1–9 Norouzi J, Yadollahpour A, Mirbagheri SA, Mazdeh MM, Hosseini SA (2022) Predicting renal failure progression in chronic kidney disease integrated fuzzy expert system. Hindawi Comput Mathematic Methods Med 2016:1–9
40.
Zurück zum Zitat Shubhajit RC, Dipankar C, Hiranmay S (2008) Development of an FPGA based smart diagnostic system for spirometric data processing applications. Int J Smart Sens Intell Syst 1(4) Shubhajit RC, Dipankar C, Hiranmay S (2008) Development of an FPGA based smart diagnostic system for spirometric data processing applications. Int J Smart Sens Intell Syst 1(4)
41.
Zurück zum Zitat Zarandi MF, Abdolkarimzadeh M (2017) Fuzzy rule based expert system to diagnose chronic kidney disease North American fuzzy information processing society annual conference, Springer, pp 323–328 Zarandi MF, Abdolkarimzadeh M (2017) Fuzzy rule based expert system to diagnose chronic kidney disease North American fuzzy information processing society annual conference, Springer, pp 323–328
Metadaten
Titel
Prediction of Abnormality in Kidney Function Using Classification Techniques and Fuzzy Systems
verfasst von
Mynapati Lakshmi Prasudha
Sukhavasi Vidyullatha
Yeluri Divya
Copyright-Jahr
2024
Verlag
Springer Nature Singapore
DOI
https://doi.org/10.1007/978-981-99-9521-9_6