Skip to main content
Erschienen in:

10.11.2018

Prediction of Bus Travel Time Over Unstable Intervals between Two Adjacent Bus Stops

verfasst von: Mansur As, Tsunenori Mine, Tsubasa Yamaguchi

Erschienen in: International Journal of Intelligent Transportation Systems Research | Ausgabe 1/2020

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

This paper addresses the problem of predicting bus travel time over unstable intervals between two adjacent bus stops using two types of machine learning techniques: ANN and SVR methods. Our model considers the variability of travel time because the travel time is often influenced by stochastic factors, which increase the variance of travel time over an interval between inter-time periods. The factors also affect the variance of the travel time over the interval at the same time period between inter-days. In addition, the factors show some correlation of travel time over the interval between time periods in a day. The performance of the proposed model is validated with real bus probe data collected from November 21st to December 20th, 2013, provided by Nishitetsu Bus Company, Fukuoka, Japan. We demonstrated the impact of two types of input variables for the prediction in off- and on-peak (rush hour) periods. The results show that the two types of inputs can effectively improve the prediction accuracy. Moreover, we compared the proposed method with our previous methods. The experimental results show the validity of our proposed method.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

ATZelectronics worldwide

ATZlectronics worldwide is up-to-speed on new trends and developments in automotive electronics on a scientific level with a high depth of information. 

Order your 30-days-trial for free and without any commitment.

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Weitere Produktempfehlungen anzeigen
Literatur
1.
Zurück zum Zitat AS, M., MINE, T.: Empirical study of travel time variability using bus probe data. Agents (ICA), IEEE International Conference on. IEEE. 146–149 (2016) AS, M., MINE, T.: Empirical study of travel time variability using bus probe data. Agents (ICA), IEEE International Conference on. IEEE. 146–149 (2016)
2.
Zurück zum Zitat AS, Mansur; MINE, Tsunenori. Estimation of travel time variability using bus probe data. In: 6th IEEE international conference on advanced logistics and transport (ICALT). IEEE 2017, pp.68–74 AS, Mansur; MINE, Tsunenori. Estimation of travel time variability using bus probe data. In: 6th IEEE international conference on advanced logistics and transport (ICALT). IEEE 2017, pp.68–74
3.
Zurück zum Zitat AS, Mansur; MINE, Tsunenori. Dynamic bus travel time prediction using an ANN-based model. In: Proceedings of the 12th International Conference on Ubiquitous Information Management and Communication. ACM, 2018. p. 20 AS, Mansur; MINE, Tsunenori. Dynamic bus travel time prediction using an ANN-based model. In: Proceedings of the 12th International Conference on Ubiquitous Information Management and Communication. ACM, 2018. p. 20
4.
Zurück zum Zitat AS, Mansur; MINE, Tsunenori. An adaptive approach for predicting bus travel time over unstable intervals. In: The 16th ITS Asia-Pacific forum FUKUOKA. ITS Asia Pacific and ITS Japan 2018, pp. 146–160 AS, Mansur; MINE, Tsunenori. An adaptive approach for predicting bus travel time over unstable intervals. In: The 16th ITS Asia-Pacific forum FUKUOKA. ITS Asia Pacific and ITS Japan 2018, pp. 146–160
5.
Zurück zum Zitat YU, B., et al.: An adaptive bus arrival time prediction model. Journal of the Eastern Asia Society for Transportation Studies. 8, 1126–1136 (2010) YU, B., et al.: An adaptive bus arrival time prediction model. Journal of the Eastern Asia Society for Transportation Studies. 8, 1126–1136 (2010)
6.
Zurück zum Zitat CORTES, C., VAPNIK, V.: Support-vector networks. Mach. Learn. 20(3), 273–297 (1995)MATH CORTES, C., VAPNIK, V.: Support-vector networks. Mach. Learn. 20(3), 273–297 (1995)MATH
7.
Zurück zum Zitat BERREBI, S.J., et al.: Comparing bus holding methods with and without real-time predictions. Transportation Research Part C: Emerging Technologies. 2017, BERREBI, S.J., et al.: Comparing bus holding methods with and without real-time predictions. Transportation Research Part C: Emerging Technologies. 2017,
8.
Zurück zum Zitat BAI, C., et al.: Dynamic bus travel time prediction models on road with multiple bus routes. Computational intelligence and neuroscience. 2015, 63 (2015)CrossRef BAI, C., et al.: Dynamic bus travel time prediction models on road with multiple bus routes. Computational intelligence and neuroscience. 2015, 63 (2015)CrossRef
9.
Zurück zum Zitat KUMAR, S.V., VANAJAKSHI, L.: Urban arterial travel time estimation using buses as probes. Arab. J. Sci. Eng. 39(11), 7555–7567 (2014)CrossRef KUMAR, S.V., VANAJAKSHI, L.: Urban arterial travel time estimation using buses as probes. Arab. J. Sci. Eng. 39(11), 7555–7567 (2014)CrossRef
10.
Zurück zum Zitat MISHRA, S., et al.: Estimation and valuation of travel time reliability for transportation planning applications. Case Studies on Transport Policy. 2017, MISHRA, S., et al.: Estimation and valuation of travel time reliability for transportation planning applications. Case Studies on Transport Policy. 2017,
11.
Zurück zum Zitat PATNAIK, J., CHIEN, S., BLADIKAS, A.: Estimation of bus arrival times using APC data. Journal of public transportation. 7(1), 1–20 (2004)CrossRef PATNAIK, J., CHIEN, S., BLADIKAS, A.: Estimation of bus arrival times using APC data. Journal of public transportation. 7(1), 1–20 (2004)CrossRef
12.
Zurück zum Zitat YU, B., et al.: Hybrid model for prediction of bus arrival times at next station. J. Adv. Transp. 44(3), 193–204 (2010)CrossRef YU, B., et al.: Hybrid model for prediction of bus arrival times at next station. J. Adv. Transp. 44(3), 193–204 (2010)CrossRef
13.
Zurück zum Zitat WESTGATE, B.S., et al.: Large-network travel time distribution estimation for ambulances. Eur. J. Oper. Res. 252(1), 322–333 (2016)CrossRef WESTGATE, B.S., et al.: Large-network travel time distribution estimation for ambulances. Eur. J. Oper. Res. 252(1), 322–333 (2016)CrossRef
14.
Zurück zum Zitat XINGHAO, S., et al.: Predicting bus real-time travel time basing on both GPS and RFID data. Procedia Soc. Behav. Sci. 96, 2287–2299 (2013)CrossRef XINGHAO, S., et al.: Predicting bus real-time travel time basing on both GPS and RFID data. Procedia Soc. Behav. Sci. 96, 2287–2299 (2013)CrossRef
15.
Zurück zum Zitat AMITA, J., SINGH, J.S., KUMAR, G.P.: Prediction of bus travel time using artificial neural network. International Journal for Traffic and Transport Engineering. 5(4), 410–424 (2015)CrossRef AMITA, J., SINGH, J.S., KUMAR, G.P.: Prediction of bus travel time using artificial neural network. International Journal for Traffic and Transport Engineering. 5(4), 410–424 (2015)CrossRef
16.
Zurück zum Zitat SUWARDO, W., NAPIAH, M., Ibrahim, K.A.M.A.R.U.D.D.I.N.: ARIMA models for bus travel time prediction. Journal of the institute of engineers Malaysia. 49–58 (2010) SUWARDO, W., NAPIAH, M., Ibrahim, K.A.M.A.R.U.D.D.I.N.: ARIMA models for bus travel time prediction. Journal of the institute of engineers Malaysia. 49–58 (2010)
17.
Zurück zum Zitat YILMAZ, I.: Comparison of landslide susceptibility mapping methodologies for Koyulhisar, Turkey: conditional probability, logistic regression, artificial neural networks, and support vector machine. Environmental Earth Sciences. 61(4), 821–836 (2010)CrossRef YILMAZ, I.: Comparison of landslide susceptibility mapping methodologies for Koyulhisar, Turkey: conditional probability, logistic regression, artificial neural networks, and support vector machine. Environmental Earth Sciences. 61(4), 821–836 (2010)CrossRef
18.
Zurück zum Zitat MÜLLER, K.-R., et al.: Predicting Time Series with Support Vector Machines. In: International Conference on Artificial Neural Networks. Springer, pp. 999–1004. Berlin, Heidelberg (1997) MÜLLER, K.-R., et al.: Predicting Time Series with Support Vector Machines. In: International Conference on Artificial Neural Networks. Springer, pp. 999–1004. Berlin, Heidelberg (1997)
19.
Zurück zum Zitat SHALABY, A., FARHAN, A.: Prediction model of bus arrival and departure times using AVL and APC data. Journal of Public Transportation. 7(1), 3 (2004)CrossRef SHALABY, A., FARHAN, A.: Prediction model of bus arrival and departure times using AVL and APC data. Journal of Public Transportation. 7(1), 3 (2004)CrossRef
20.
Zurück zum Zitat GAL, A., et al.: Traveling time prediction in scheduled transportation with journey segments. Inf. Syst. 64, 266–280 (2017)CrossRef GAL, A., et al.: Traveling time prediction in scheduled transportation with journey segments. Inf. Syst. 64, 266–280 (2017)CrossRef
21.
Zurück zum Zitat MAZLOUMI, E., et al.: Using SCATS data to predict bus travel time. In: 32nd Australian Transport Research Forum (ATRF), p. 2009. Auckland, New Zealand MAZLOUMI, E., et al.: Using SCATS data to predict bus travel time. In: 32nd Australian Transport Research Forum (ATRF), p. 2009. Auckland, New Zealand
22.
Zurück zum Zitat Lelitha, V.A.N.A.J.A.K.S.H.I., RILETT, Laurence, R.: Support vector machine technique for the short term prediction of travel time. In: Intelligent vehicles symposium, 2007 IEEE. IEEE. 600–605 (2007) Lelitha, V.A.N.A.J.A.K.S.H.I., RILETT, Laurence, R.: Support vector machine technique for the short term prediction of travel time. In: Intelligent vehicles symposium, 2007 IEEE. IEEE. 600–605 (2007)
23.
Zurück zum Zitat CHANG, C.-C., LIN, C.-J.: LIBSVM: a library for support vector machines. ACM transactions on intelligent systems and technology (TIST). 2(3), (2011)CrossRef CHANG, C.-C., LIN, C.-J.: LIBSVM: a library for support vector machines. ACM transactions on intelligent systems and technology (TIST). 2(3), (2011)CrossRef
Metadaten
Titel
Prediction of Bus Travel Time Over Unstable Intervals between Two Adjacent Bus Stops
verfasst von
Mansur As
Tsunenori Mine
Tsubasa Yamaguchi
Publikationsdatum
10.11.2018
Verlag
Springer US
Erschienen in
International Journal of Intelligent Transportation Systems Research / Ausgabe 1/2020
Print ISSN: 1348-8503
Elektronische ISSN: 1868-8659
DOI
https://doi.org/10.1007/s13177-018-0169-3

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.