Skip to main content
main-content

Tipp

Weitere Artikel dieser Ausgabe durch Wischen aufrufen

08.01.2014 | Ausgabe 2/2016

Journal of Intelligent Manufacturing 2/2016

Prediction of drill flank wear using ensemble of co-evolutionary particle swarm optimization based-selective neural network ensembles

Zeitschrift:
Journal of Intelligent Manufacturing > Ausgabe 2/2016
Autoren:
Wen-An Yang, Wei Zhou, Wenhe Liao, Yu Guo

Abstract

Flank wear prediction plays an important role in achieving improved productivity and better quality of the product. This study presents an effective co-evolutionary particle swarm optimization-based selective neural network ensembles (E-CPSOSEN) enabled tool wear prediction model for flank wear prediction in drilling operations. The E-CPSOSEN algorithm utilized two populations of particle swarm optimizations (PSOs) that are co-evolved simultaneously, one discrete particle swarm optimizations for evolving the binary selection vector, and the other continuous particle swarm optimizations for evolving the real weight vector. The two PSOs interact with each other through the fitness evaluation. The E-CPSOSEN algorithm is first tested on four benchmark problems taken from the literature. Upon achieving good results for test cases, the E-CPSOSEN enabled tool wear prediction model was employed to three illustrative case studies of flank wear prediction in drilling operations. Significant improvement is also obtained in comparison to the results already reported in literatures, which further reveals that the E-CPSOSEN enabled tool wear prediction model has more wonderful prediction performance than conventional single ANN-based models in predicting the flank wear in drilling operations. Moreover, an investigation was also conducted to identity the effects of the major parameters of the E-CPSOSEN algorithm upon its prediction performance. From the given results, the proposed enabled tool wear prediction model may be a promising tool for the accurate and automatic prediction of flank wear in drilling operations.

Bitte loggen Sie sich ein, um Zugang zu diesem Inhalt zu erhalten

Sie möchten Zugang zu diesem Inhalt erhalten? Dann informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 69.000 Bücher
  • über 500 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Umwelt
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Testen Sie jetzt 30 Tage kostenlos.

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 50.000 Bücher
  • über 380 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Umwelt
  • Maschinenbau + Werkstoffe




Testen Sie jetzt 30 Tage kostenlos.

Literatur
Über diesen Artikel

Weitere Artikel der Ausgabe 2/2016

Journal of Intelligent Manufacturing 2/2016 Zur Ausgabe

Premium Partner

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen. 

    Bildnachweise