Skip to main content

2019 | OriginalPaper | Buchkapitel

5. Prediction of Effective Properties of Composites Based on Ferroelectric Ceramics

verfasst von : Hamideh Khanbareh, Vitaly Yu. Topolov, Christopher R. Bowen

Erschienen in: Piezo-Particulate Composites

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The important step at the study of the piezo-particulate composites is concerned with the prediction of their effective properties. Hereby a number of models have been put forward at modelling and interpretation of the properties. Examples of the effective piezoelectric properties and related parameters of 0–3, 1–3 and 2–2 ferroelectric ceramic/polymer composites, and 0–3-type composites with two kinds of the ceramic inclusions are discussed to demonstrate the influence of microgeometric characteristics, components and other factors on the electromechanical coupling and piezoelectric performance of the composites. The effective pyroelectric and dielectric properties of the ceramic-based composites are considered to a lesser degree. The microgeometry of the piezo-active composite plays a key role in determining its piezoelectric sensitivity, and changes in the microgeometry can lead to appreciable changes in the piezoelectric sensitivity and related parameters. Main examples of the piezoelectric sensitivity are concerned with composites that are based on either the PZT-type or PbTiO3-type ceramics. Calculated parameters are compared to the known experimental data.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat R.E. Newnham, D.P. Skinner, L.E. Cross, Connectivity and piezoelectric-pyroelectric composites. Mater. Res. Bull. 13, 525–536 (1978)CrossRef R.E. Newnham, D.P. Skinner, L.E. Cross, Connectivity and piezoelectric-pyroelectric composites. Mater. Res. Bull. 13, 525–536 (1978)CrossRef
2.
Zurück zum Zitat K.A. Klicker, J.V. Biggers, R.E. Newnham, Composites of PZT and epoxy for hydrostatic transducer applications. J. Am. Ceram. Soc. 64, 5–9 (1981)CrossRef K.A. Klicker, J.V. Biggers, R.E. Newnham, Composites of PZT and epoxy for hydrostatic transducer applications. J. Am. Ceram. Soc. 64, 5–9 (1981)CrossRef
3.
Zurück zum Zitat H.L.W. Chan, J. Unsworth, Simple model for piezoelectric ceramic/polymer 1–3 composites used in ultrasonic transducer applications. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 36, 434–441 (1989)CrossRef H.L.W. Chan, J. Unsworth, Simple model for piezoelectric ceramic/polymer 1–3 composites used in ultrasonic transducer applications. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 36, 434–441 (1989)CrossRef
4.
Zurück zum Zitat H.L.W. Chan, M.C. Cheung, C.L. Choy, Study on BaTiO3/P(VDF–TrFE) 0–3 composites. Ferroelectrics 224, 113–120 (1999)CrossRef H.L.W. Chan, M.C. Cheung, C.L. Choy, Study on BaTiO3/P(VDF–TrFE) 0–3 composites. Ferroelectrics 224, 113–120 (1999)CrossRef
5.
Zurück zum Zitat E.K. Akdogan, M. Allahverdi, A. Safari, Piezoelectric composites for sensor and actuator applications. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 52, 746–775 (2005)CrossRef E.K. Akdogan, M. Allahverdi, A. Safari, Piezoelectric composites for sensor and actuator applications. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 52, 746–775 (2005)CrossRef
6.
Zurück zum Zitat S.A. Wilson, G.M. Maistros, R.W. Whatmore, Structure modification of 0–3 piezoelectric ceramic/polymer composites through dielectrophoresis. J. Phys. D Appl. Phys. 38, 175–182 (2005)CrossRef S.A. Wilson, G.M. Maistros, R.W. Whatmore, Structure modification of 0–3 piezoelectric ceramic/polymer composites through dielectrophoresis. J. Phys. D Appl. Phys. 38, 175–182 (2005)CrossRef
7.
Zurück zum Zitat F. Wang, C. He, Y. Tang, Single crystal 0.7Pb(Mg1/3Nb2/3)O3–0.3PbTiO3 epoxy 1–3 piezoelectric composites prepared by the lamination technique. Mater. Chem. Phys. 105, 273–277 (2007)CrossRef F. Wang, C. He, Y. Tang, Single crystal 0.7Pb(Mg1/3Nb2/3)O3–0.3PbTiO3 epoxy 1–3 piezoelectric composites prepared by the lamination technique. Mater. Chem. Phys. 105, 273–277 (2007)CrossRef
8.
Zurück zum Zitat J.B. Ngoma, J.Y. Cavaille, J. Paletto, J. Perez, Dielectric and piezoelectric properties of copolymer-ferroelectric composite. Ferroelectrics 109, 205–210 (1990)CrossRef J.B. Ngoma, J.Y. Cavaille, J. Paletto, J. Perez, Dielectric and piezoelectric properties of copolymer-ferroelectric composite. Ferroelectrics 109, 205–210 (1990)CrossRef
9.
Zurück zum Zitat H.L.W. Chan, Y. Chen, C.L. Choy, Thermal hysteresis in the permittivity and polarization of lead zirconate titanate/vinylidenefloride-trifluoroethylene 0–3 composites. IEEE Trans. Dielectr. Electr. Insul. 3, 800–805 (1996)CrossRef H.L.W. Chan, Y. Chen, C.L. Choy, Thermal hysteresis in the permittivity and polarization of lead zirconate titanate/vinylidenefloride-trifluoroethylene 0–3 composites. IEEE Trans. Dielectr. Electr. Insul. 3, 800–805 (1996)CrossRef
10.
Zurück zum Zitat Y. Hirata, T. Numazawa, H. Takada, Effects of aspect ratio of lead zirconate titanate on 1–3 piezoelectric composite properties. Jpn. J. Appl. Phys. Pt 1(36), 6062–6064 (1997)CrossRef Y. Hirata, T. Numazawa, H. Takada, Effects of aspect ratio of lead zirconate titanate on 1–3 piezoelectric composite properties. Jpn. J. Appl. Phys. Pt 1(36), 6062–6064 (1997)CrossRef
11.
Zurück zum Zitat L. Pardo, J. Mendiola, C. Alemany, Theoretical treatment of ferroelectric composites using Monte Carlo calculations. J. Appl. Phys. 64, 5092–5097 (1988)CrossRef L. Pardo, J. Mendiola, C. Alemany, Theoretical treatment of ferroelectric composites using Monte Carlo calculations. J. Appl. Phys. 64, 5092–5097 (1988)CrossRef
12.
Zurück zum Zitat A.A. Grekov, S.O. Kramarov, A.A. Kuprienko, Effective properties of a transversely isotropic piezoelectric composite with cylindrical inclusions. Mech. Compos. Mater. 25, 54–61 (1989)CrossRef A.A. Grekov, S.O. Kramarov, A.A. Kuprienko, Effective properties of a transversely isotropic piezoelectric composite with cylindrical inclusions. Mech. Compos. Mater. 25, 54–61 (1989)CrossRef
13.
Zurück zum Zitat F. Levassort, M. Lethiecq, C. Millar, L. Pourcelot, Modeling of highly loaded 0–3 piezoelectric composites using a matrix method. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 45, 1497–1505 (1998)CrossRef F. Levassort, M. Lethiecq, C. Millar, L. Pourcelot, Modeling of highly loaded 0–3 piezoelectric composites using a matrix method. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 45, 1497–1505 (1998)CrossRef
14.
Zurück zum Zitat V.M. Levin, M.I. Rakovskaja, W.S. Kreher, The effective thermoelectroelastic properties of microinhomogeneous materials. Int. J. Solids Struct. 36, 2683–2705 (1999)CrossRef V.M. Levin, M.I. Rakovskaja, W.S. Kreher, The effective thermoelectroelastic properties of microinhomogeneous materials. Int. J. Solids Struct. 36, 2683–2705 (1999)CrossRef
15.
Zurück zum Zitat F. Levassort, V.Yu. Topolov, M. Lethiecq, A comparative study of different methods of evaluating effective electromechanical properties of 0–3 and 1–3 ceramic/polymer composites. J. Phys. D Appl. Phys. 33, 2064–2068 (2000) F. Levassort, V.Yu. Topolov, M. Lethiecq, A comparative study of different methods of evaluating effective electromechanical properties of 0–3 and 1–3 ceramic/polymer composites. J. Phys. D Appl. Phys. 33, 2064–2068 (2000)
16.
Zurück zum Zitat C.K. Wong, Y.M. Poon, F.G. Shin, Explicit formulas for effective piezoelectric coefficients of ferroelectric 0–3 composites based on effective medium theory. J. Appl. Phys. 93, 487–496 (2003)CrossRef C.K. Wong, Y.M. Poon, F.G. Shin, Explicit formulas for effective piezoelectric coefficients of ferroelectric 0–3 composites based on effective medium theory. J. Appl. Phys. 93, 487–496 (2003)CrossRef
17.
Zurück zum Zitat N. Fakri, L. Azrar, L. El Bakkali, Electroelastic behavior modeling of piezoelectric composite materials containing spatially oriented reinforcements. Int. J. Solids Struct. 40, 361–384 (2003)CrossRef N. Fakri, L. Azrar, L. El Bakkali, Electroelastic behavior modeling of piezoelectric composite materials containing spatially oriented reinforcements. Int. J. Solids Struct. 40, 361–384 (2003)CrossRef
18.
Zurück zum Zitat S.V. Glushanin, V.Yu. Topolov, A.V. Krivoruchko, Features of piezoelectric properties of 0–3 PbTiO3-type ceramic/polymer composites. Mater. Chem. Phys. 97, 357–364 (2006) S.V. Glushanin, V.Yu. Topolov, A.V. Krivoruchko, Features of piezoelectric properties of 0–3 PbTiO3-type ceramic/polymer composites. Mater. Chem. Phys. 97, 357–364 (2006)
19.
Zurück zum Zitat Yu.V. Sokolkin, A.A. Pan’kov, Electroelasticity of Piezo-Composites with Irregular Structures (Fizmatlit, Moscow, 2003) (in Russian) Yu.V. Sokolkin, A.A. Pan’kov, Electroelasticity of Piezo-Composites with Irregular Structures (Fizmatlit, Moscow, 2003) (in Russian)
20.
Zurück zum Zitat R. Kar-Gupta, T.A. Venkatesh, Electromechanical response of 1–3 piezoelectric composites: effect of poling characteristics. J. Appl. Phys. 98, 054102 (2005)CrossRef R. Kar-Gupta, T.A. Venkatesh, Electromechanical response of 1–3 piezoelectric composites: effect of poling characteristics. J. Appl. Phys. 98, 054102 (2005)CrossRef
21.
Zurück zum Zitat R. Kar-Gupta, T.A. Venkatesh, Electromechanical response of 1–3 piezoelectric composites: an analytical model. Acta Mater. 55, 1093–1108 (2007)CrossRef R. Kar-Gupta, T.A. Venkatesh, Electromechanical response of 1–3 piezoelectric composites: an analytical model. Acta Mater. 55, 1093–1108 (2007)CrossRef
22.
Zurück zum Zitat V.Yu. Topolov, P. Bisegna, A.V. Krivoruchko, Features of electromechanical properties of 1–3 composites based on PbTiO3-type ceramics. J. Phys. D Appl. Phys. 41, 035406 (2008) V.Yu. Topolov, P. Bisegna, A.V. Krivoruchko, Features of electromechanical properties of 1–3 composites based on PbTiO3-type ceramics. J. Phys. D Appl. Phys. 41, 035406 (2008)
23.
Zurück zum Zitat V.Yu. Topolov, C.R. Bowen, Electromechanical Properties in Composites Based on Ferroelectrics (Springer, London, 2009) V.Yu. Topolov, C.R. Bowen, Electromechanical Properties in Composites Based on Ferroelectrics (Springer, London, 2009)
24.
Zurück zum Zitat V.Yu. Topolov, P. Bisegna, C.R. Bowen, Piezo-Active Composites. Orientation Effects and Anisotropy Factors (Springer, Berlin, Heidelberg, 2014) V.Yu. Topolov, P. Bisegna, C.R. Bowen, Piezo-Active Composites. Orientation Effects and Anisotropy Factors (Springer, Berlin, Heidelberg, 2014)
25.
Zurück zum Zitat V.Yu. Topolov, C.R. Bowen, P. Bisegna, New aspect-ratio effect in three-component composites for piezoelectric sensor, hydrophone and energy-harvesting applications. Sens. Actuators A – Phys. 229, 94–103 (2015) V.Yu. Topolov, C.R. Bowen, P. Bisegna, New aspect-ratio effect in three-component composites for piezoelectric sensor, hydrophone and energy-harvesting applications. Sens. Actuators A – Phys. 229, 94–103 (2015)
26.
Zurück zum Zitat T.R. Gururaja, A. Safari, R.E. Newnham, L.E. Cross, Piezoelectric ceramic/polymer composites for transducer applications, in Electronic Ceramics: Properties, Devices, and Applications, ed. by M. Levinson (Marcel Dekker, New York Basel, 1988), pp. 92–128 T.R. Gururaja, A. Safari, R.E. Newnham, L.E. Cross, Piezoelectric ceramic/polymer composites for transducer applications, in Electronic Ceramics: Properties, Devices, and Applications, ed. by M. Levinson (Marcel Dekker, New York Basel, 1988), pp. 92–128
27.
Zurück zum Zitat G.M. Garner, N.M. Shorrocks, R.W. Whatmore, M.T. Goosey, P. Seth, F.W. Ainger, 0–3 piezoelectric composites for large area hydrophones. Ferroelectrics 93, 169–176 (1989)CrossRef G.M. Garner, N.M. Shorrocks, R.W. Whatmore, M.T. Goosey, P. Seth, F.W. Ainger, 0–3 piezoelectric composites for large area hydrophones. Ferroelectrics 93, 169–176 (1989)CrossRef
28.
Zurück zum Zitat A. Safari, E.K. Akdogan, Rapid prototyping of novel piezoelectric composites. Ferroelectrics 331, 153–179 (2006)CrossRef A. Safari, E.K. Akdogan, Rapid prototyping of novel piezoelectric composites. Ferroelectrics 331, 153–179 (2006)CrossRef
29.
Zurück zum Zitat C.A. Randall, D.V. Miller, J.H. Adair, A.S. Bhalla, Processing of electroceramic—polymer composites using the electrorheological effect. J. Mater. Res. 8, 899–904 (1993)CrossRef C.A. Randall, D.V. Miller, J.H. Adair, A.S. Bhalla, Processing of electroceramic—polymer composites using the electrorheological effect. J. Mater. Res. 8, 899–904 (1993)CrossRef
30.
Zurück zum Zitat H. Khanbareh, S. van der Zwaag, W. Groen, Effect of dielectrophoretic structuring on piezoelectric and pyroelectric properties of PT-epoxy composites. Smart Mater. Struct. 23, 105030 (2014)CrossRef H. Khanbareh, S. van der Zwaag, W. Groen, Effect of dielectrophoretic structuring on piezoelectric and pyroelectric properties of PT-epoxy composites. Smart Mater. Struct. 23, 105030 (2014)CrossRef
31.
Zurück zum Zitat M.P. Wenger, D.K. Das-Gupta, Mixed connectivity composite material characterization for electroactive sensors. Polym. Eng. Sci. 39, 1176–1188 (1999)CrossRef M.P. Wenger, D.K. Das-Gupta, Mixed connectivity composite material characterization for electroactive sensors. Polym. Eng. Sci. 39, 1176–1188 (1999)CrossRef
32.
Zurück zum Zitat L.P. Khoroshun, B.P. Maslov, P.V. Leshchenko, Prediction of Effective Properties of Piezo-Active Composite Materials (Naukova Dumka, Kiev, 1989) (in Russian) L.P. Khoroshun, B.P. Maslov, P.V. Leshchenko, Prediction of Effective Properties of Piezo-Active Composite Materials (Naukova Dumka, Kiev, 1989) (in Russian)
33.
Zurück zum Zitat J.H. Huang, W.-S. Kuo, Micromechanics determination of the effective properties of piezoelectric composites containing spatially oriented short fibers. Acta Mater. 44, 4889–4898 (1996)CrossRef J.H. Huang, W.-S. Kuo, Micromechanics determination of the effective properties of piezoelectric composites containing spatially oriented short fibers. Acta Mater. 44, 4889–4898 (1996)CrossRef
34.
Zurück zum Zitat T. Mori, K. Tanaka, Average stress in matrix and average elastic energy of materials with misfitting inclusions. Acta Metall. 21, 571–574 (1973)CrossRef T. Mori, K. Tanaka, Average stress in matrix and average elastic energy of materials with misfitting inclusions. Acta Metall. 21, 571–574 (1973)CrossRef
35.
Zurück zum Zitat M.L. Dunn, M. Taya, An analysis of piezoelectric composite materials containing ellipsoidal inhomogeneities. Proc. R. Soc. (Lond.), Pt A 443, 265–287 (1993) M.L. Dunn, M. Taya, An analysis of piezoelectric composite materials containing ellipsoidal inhomogeneities. Proc. R. Soc. (Lond.), Pt A 443, 265–287 (1993)
36.
Zurück zum Zitat M.L. Dunn, M. Taya, Micromechanics predictions of the effective electroelastic moduli of piezoelectric composites. Int. J. Solids Struct. 30, 161–175 (1993)CrossRef M.L. Dunn, M. Taya, Micromechanics predictions of the effective electroelastic moduli of piezoelectric composites. Int. J. Solids Struct. 30, 161–175 (1993)CrossRef
37.
Zurück zum Zitat C. Poizat, M. Sester, Homogénéisation périodique de composites piézoélectriques 0–3: influence de la distribution. Rev. des Compos. et des Matériaux Avancés 11, 65–74 (2001)CrossRef C. Poizat, M. Sester, Homogénéisation périodique de composites piézoélectriques 0–3: influence de la distribution. Rev. des Compos. et des Matériaux Avancés 11, 65–74 (2001)CrossRef
38.
Zurück zum Zitat J.H. Huang, S. Yu, Electroelastic Eshelby tensors for an ellipsoidal piezoelectric inclusion. Compos. Eng. 4, 1169–1182 (1994)CrossRef J.H. Huang, S. Yu, Electroelastic Eshelby tensors for an ellipsoidal piezoelectric inclusion. Compos. Eng. 4, 1169–1182 (1994)CrossRef
39.
Zurück zum Zitat C.J. Dias, D.K. Das-Gupta, Electroactive polymer-ceramic composites, in Proceedings of the 4th International Conference on Properties and Applications of Dielectric Materials, July 3–8, 1994, Brisbane, Australia (IEEE, Piscataway (1994), pp. 175–178 C.J. Dias, D.K. Das-Gupta, Electroactive polymer-ceramic composites, in Proceedings of the 4th International Conference on Properties and Applications of Dielectric Materials, July 3–8, 1994, Brisbane, Australia (IEEE, Piscataway (1994), pp. 175–178
40.
Zurück zum Zitat D.A. Berlincourt, D.R. Cerran, H. Jaffe, Piezoelectric and piezomagnetic materials and their function in transducers, in Physical Acoustics. Principles and Methods, Vol. 1: Methods and Devices, ed. Mason W (Pt A. Academic Press, New York London, 1964), pp. 169–270 D.A. Berlincourt, D.R. Cerran, H. Jaffe, Piezoelectric and piezomagnetic materials and their function in transducers, in Physical Acoustics. Principles and Methods, Vol. 1: Methods and Devices, ed. Mason W (Pt A. Academic Press, New York London, 1964), pp. 169–270
41.
Zurück zum Zitat R.E. Newnham, Nonmechanical properties of composites, in Concise Encyclopedia of Composite Materials, ed. by A. Kelly, R.W. Cahn, M.B. Bever (Elsevier, Oxford, 1994), pp. 214–220 R.E. Newnham, Nonmechanical properties of composites, in Concise Encyclopedia of Composite Materials, ed. by A. Kelly, R.W. Cahn, M.B. Bever (Elsevier, Oxford, 1994), pp. 214–220
42.
Zurück zum Zitat V.Yu. Topolov, P. Bisegna, Anisotropic piezoelectric properties of 1–3 ceramic/polymer composites comprising rods with elliptic cross section. J. Electroceram. 25, 26–37 (2010) V.Yu. Topolov, P. Bisegna, Anisotropic piezoelectric properties of 1–3 ceramic/polymer composites comprising rods with elliptic cross section. J. Electroceram. 25, 26–37 (2010)
43.
Zurück zum Zitat V.Yu. Topolov, C.R. Bowen, P. Bisegna, Piezo-Active composites. Microgeometry – Sensitivity Relations (Springer International Publishing Switzerland, 2018) V.Yu. Topolov, C.R. Bowen, P. Bisegna, Piezo-Active composites. Microgeometry – Sensitivity Relations (Springer International Publishing Switzerland, 2018)
44.
Zurück zum Zitat V.Yu. Topolov, S.V. Glushanin, Evolution of connectivity patterns and links between interfaces and piezoelectric properties of two-component composites. J. Phys. D Appl. Phys. 35, 2008–2014 (2002) V.Yu. Topolov, S.V. Glushanin, Evolution of connectivity patterns and links between interfaces and piezoelectric properties of two-component composites. J. Phys. D Appl. Phys. 35, 2008–2014 (2002)
45.
Zurück zum Zitat P. Bisegna, Private communication (2018) P. Bisegna, Private communication (2018)
46.
Zurück zum Zitat L.V. Gibiansky, S. Torquato, On the use of homogenization theory to design optimal piezocomposites for hydrophone applications. J. Mech. Phys. Solids 45, 689–708 (1997)CrossRef L.V. Gibiansky, S. Torquato, On the use of homogenization theory to design optimal piezocomposites for hydrophone applications. J. Mech. Phys. Solids 45, 689–708 (1997)CrossRef
47.
Zurück zum Zitat H. Khanbareh, Expanding the functionality of piezo-particulate composites. Dissertation, Delft University of Technology, Delft, 2016 H. Khanbareh, Expanding the functionality of piezo-particulate composites. Dissertation, Delft University of Technology, Delft, 2016
48.
Zurück zum Zitat C. Dias, D. Das Gupta, Inorganic ceramic polymer ferroelectric composite electrets. IEEE Trans. Dielectr. Electr. Insul. 3, 706–734 (1996)CrossRef C. Dias, D. Das Gupta, Inorganic ceramic polymer ferroelectric composite electrets. IEEE Trans. Dielectr. Electr. Insul. 3, 706–734 (1996)CrossRef
49.
Zurück zum Zitat V.Yu. Topolov, A.V. Turik, A.I. Chernobabov, On the mechanism of high piezoelectric anisotropy in lead titanate-based ferroelectrics. Crystallogr. Rep. 39, 805–809 (1994) V.Yu. Topolov, A.V. Turik, A.I. Chernobabov, On the mechanism of high piezoelectric anisotropy in lead titanate-based ferroelectrics. Crystallogr. Rep. 39, 805–809 (1994)
50.
Zurück zum Zitat V.Yu. Topolov, A.V. Turik, A.I. Chernobabov, On the piezoelectric anisotropy in modified PbTiO3 ceramics. Ferroelectrics 154, 271–276 (1994) V.Yu. Topolov, A.V. Turik, A.I. Chernobabov, On the piezoelectric anisotropy in modified PbTiO3 ceramics. Ferroelectrics 154, 271–276 (1994)
51.
Zurück zum Zitat E.I. Bondarenko, V.Yu. Topolov, A.V. Turik, The role of 90° domain wall displacements in forming physical properties of perovskite ferroelectric ceramics. Ferroelectr. Lett. Sect. 13, 13–19 (1991) E.I. Bondarenko, V.Yu. Topolov, A.V. Turik, The role of 90° domain wall displacements in forming physical properties of perovskite ferroelectric ceramics. Ferroelectr. Lett. Sect. 13, 13–19 (1991)
Metadaten
Titel
Prediction of Effective Properties of Composites Based on Ferroelectric Ceramics
verfasst von
Hamideh Khanbareh
Vitaly Yu. Topolov
Christopher R. Bowen
Copyright-Jahr
2019
DOI
https://doi.org/10.1007/978-3-030-19204-4_5

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.