Skip to main content
Erschienen in: Neural Computing and Applications 7/2021

25.06.2020 | Original Article

Prediction of electromagnetic field patterns of optical waveguide using neural network

verfasst von: Gandhi Alagappan, Ching Eng Png

Erschienen in: Neural Computing and Applications | Ausgabe 7/2021

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Physical fields represent quantities that vary in space and/or time axes. Understanding the distribution of a field pattern is a key element in scientific discoveries and technological developments. In this article, by picking up the electromagnetic field of an optical waveguide as an example, we demonstrate how field patterns can be uncovered using artificial neural networks. The cross section plane of the optical waveguide is discretized into a set of tiny pixels, and the field values are obtained at these pixels. Deep learning model is created by assuming the field values as outputs, and the geometrical dimensions of the waveguide as inputs. The correlation between the field values in the adjacent pixels is established by mean of feedback using a recurrent neural network. The trained deep learning model enables field pattern prediction for the entire (and usual) parameter space for applications in the field of photonics.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Nayak J, Bighnaraj B, Behera HS (2015) A comprehensive survey on support vector machine in data mining tasks: applications and challenges. Int J Database Theory Appl 8:169–186 Nayak J, Bighnaraj B, Behera HS (2015) A comprehensive survey on support vector machine in data mining tasks: applications and challenges. Int J Database Theory Appl 8:169–186
2.
Zurück zum Zitat May A et al (2019) Kernel approximation methods for speech recognition. J Mach Learn Res 20:1–36MathSciNet May A et al (2019) Kernel approximation methods for speech recognition. J Mach Learn Res 20:1–36MathSciNet
3.
Zurück zum Zitat Lakin SM et al (2019) Hierarchical hidden Markov models enable accurate and diverse detection of antimicrobial resistance sequences. Commun Biol 2:294 Lakin SM et al (2019) Hierarchical hidden Markov models enable accurate and diverse detection of antimicrobial resistance sequences. Commun Biol 2:294
4.
Zurück zum Zitat Lee PM (2004) Bayesian statistics: an introduction, 3rd edn. Hodder Education Publishers, LondonMATH Lee PM (2004) Bayesian statistics: an introduction, 3rd edn. Hodder Education Publishers, LondonMATH
5.
Zurück zum Zitat Battula BP, RamaKrishna KVSS, Kim T (2015) An efficient approach for knowledge discovery in decision trees using inter quartile range transform. Int J Control Autom 8:325–334 Battula BP, RamaKrishna KVSS, Kim T (2015) An efficient approach for knowledge discovery in decision trees using inter quartile range transform. Int J Control Autom 8:325–334
6.
Zurück zum Zitat Goodfellow I, Bengio Y, Courville A (2016) Deep learning. MIT Press, New YorkMATH Goodfellow I, Bengio Y, Courville A (2016) Deep learning. MIT Press, New YorkMATH
7.
Zurück zum Zitat Sharma N, Jain V, Mishra A (2018) An analysis of convolutional neural networks for image classification. Procedia Comput Sci 132:377–384 Sharma N, Jain V, Mishra A (2018) An analysis of convolutional neural networks for image classification. Procedia Comput Sci 132:377–384
8.
Zurück zum Zitat Kłosowski P (2018) Deep learning for natural language processing and language modelling. In: Signal processing: algorithms, architectures, arrangements, and applications (SPA), Poznan, pp 223–228 Kłosowski P (2018) Deep learning for natural language processing and language modelling. In: Signal processing: algorithms, architectures, arrangements, and applications (SPA), Poznan, pp 223–228
9.
Zurück zum Zitat Nassif AB, Shahin I, Attili I, Azzeh M, Shaalan K (2019) Speech recognition using deep neural networks: a systematic review. IEEE Access 7:19143–19165 Nassif AB, Shahin I, Attili I, Azzeh M, Shaalan K (2019) Speech recognition using deep neural networks: a systematic review. IEEE Access 7:19143–19165
10.
Zurück zum Zitat Pierson HA, Gashler MS (2017) Deep learning in robotics: a review of recent research. Adv Robot 31:821–835 Pierson HA, Gashler MS (2017) Deep learning in robotics: a review of recent research. Adv Robot 31:821–835
11.
Zurück zum Zitat Wang J et al (2018) Deep learning for smart manufacturing: methods and applications. J Manuf Syst 48:144–156 Wang J et al (2018) Deep learning for smart manufacturing: methods and applications. J Manuf Syst 48:144–156
12.
Zurück zum Zitat Lavecchia A (2019) Deep learning in drug discovery: opportunities, challenges and future prospects. Drug Discov Today 24:2017–2032 Lavecchia A (2019) Deep learning in drug discovery: opportunities, challenges and future prospects. Drug Discov Today 24:2017–2032
13.
Zurück zum Zitat Xue D et al (2016) Accelerated search for materials with targeted properties by adaptive design. Nat Commun 7:11241 Xue D et al (2016) Accelerated search for materials with targeted properties by adaptive design. Nat Commun 7:11241
14.
Zurück zum Zitat Sadowski P et al (2015) Deep learning, dark knowledge, and dark matter. Proc Mach Learn Res 42:81–87 Sadowski P et al (2015) Deep learning, dark knowledge, and dark matter. Proc Mach Learn Res 42:81–87
15.
Zurück zum Zitat Zhu L et al (2008) Deep learning for seismic phase detection and picking in the aftershock zone of 2008 Mw7.9 Wenchuan earthquake. arXiv:1901.06396 Zhu L et al (2008) Deep learning for seismic phase detection and picking in the aftershock zone of 2008 Mw7.9 Wenchuan earthquake. arXiv:​1901.​06396
16.
Zurück zum Zitat Brunton SL, Noack BR, Koumoutsakos P (2020) Machine learning for fluid mechanics. Annu Rev Fluid Mech 52:477–508MATH Brunton SL, Noack BR, Koumoutsakos P (2020) Machine learning for fluid mechanics. Annu Rev Fluid Mech 52:477–508MATH
17.
Zurück zum Zitat Beerel PA, Pedram M (2018) Opportunities for machine learning in electronic design automation. In: 2018 IEEE international symposium on circuits and systems (ISCAS), Florence, pp 1–5 Beerel PA, Pedram M (2018) Opportunities for machine learning in electronic design automation. In: 2018 IEEE international symposium on circuits and systems (ISCAS), Florence, pp 1–5
18.
Zurück zum Zitat Landau LD, Lifshitz EM (2015) The classical theory of fields, 4th edn. Butterworth Heinemann Ltd, OxfordMATH Landau LD, Lifshitz EM (2015) The classical theory of fields, 4th edn. Butterworth Heinemann Ltd, OxfordMATH
19.
Zurück zum Zitat Acheson DJ (1990) Elementary fluid dynamics. Oxford applied mathematics and computing science series. Oxford University Press, OxfordMATH Acheson DJ (1990) Elementary fluid dynamics. Oxford applied mathematics and computing science series. Oxford University Press, OxfordMATH
20.
Zurück zum Zitat Griffiths DJ (2017) Introduction to electrodynamics, 4th edn. Cambridge University Press, CambridgeMATH Griffiths DJ (2017) Introduction to electrodynamics, 4th edn. Cambridge University Press, CambridgeMATH
21.
Zurück zum Zitat Turduev M, Bor E, Latifoglu C, Giden IH, Hanay YS, Kurt H (2018) Ultracompact photonic structure design for strong light confinement and coupling into nanowaveguide. J Lightw Technol 36:2812–2819 Turduev M, Bor E, Latifoglu C, Giden IH, Hanay YS, Kurt H (2018) Ultracompact photonic structure design for strong light confinement and coupling into nanowaveguide. J Lightw Technol 36:2812–2819
22.
Zurück zum Zitat Malkiel I, Nagler A, Mrejen M, Arieli U, Wolf L, Suchowski H (2017) Deep learning for design and retrieval of nanophotonic structures. arXiv:1702.07949 Malkiel I, Nagler A, Mrejen M, Arieli U, Wolf L, Suchowski H (2017) Deep learning for design and retrieval of nanophotonic structures. arXiv:​1702.​07949
23.
Zurück zum Zitat Ma W, Cheng F, Liu Y (2018) Deep-learning-enabled on-demand design of chiral metamaterials. ACS Nano 12:6326–6334 Ma W, Cheng F, Liu Y (2018) Deep-learning-enabled on-demand design of chiral metamaterials. ACS Nano 12:6326–6334
24.
Zurück zum Zitat Liu D, Tan Y, Khoram E, Yu Z (2018) Training deep neural networks for the inverse design of nanophotonic structures. ACS Photonics 5:1365–1369 Liu D, Tan Y, Khoram E, Yu Z (2018) Training deep neural networks for the inverse design of nanophotonic structures. ACS Photonics 5:1365–1369
25.
Zurück zum Zitat Alagappan G, Png CE (2019) Deep learning models for effective refractive indices in silicon nitride waveguides. J Opt 21:035801 Alagappan G, Png CE (2019) Deep learning models for effective refractive indices in silicon nitride waveguides. J Opt 21:035801
26.
Zurück zum Zitat Alagappan G, Png CE (2018) Modal classification in optical waveguides using deep learning. J Mod Opt 66:557–561 Alagappan G, Png CE (2018) Modal classification in optical waveguides using deep learning. J Mod Opt 66:557–561
27.
Zurück zum Zitat Okamato K (2006) Fundamental of optical waveguides. Elsevier Inc., Amsterdam Okamato K (2006) Fundamental of optical waveguides. Elsevier Inc., Amsterdam
28.
Zurück zum Zitat Yariv A, Yeh P (2007) Photonics: optical electronics in modern communications. Oxford University Press, Oxford Yariv A, Yeh P (2007) Photonics: optical electronics in modern communications. Oxford University Press, Oxford
29.
Zurück zum Zitat Gondarenko A, Levy JS, Lipson M (2009) High confinement micron-scale silicon nitride high Q ring resonator. Opt Express 17:11366–11370 Gondarenko A, Levy JS, Lipson M (2009) High confinement micron-scale silicon nitride high Q ring resonator. Opt Express 17:11366–11370
30.
Zurück zum Zitat Sun X, Alam MZ, Aitchison JS, Mojahedi M (2016) Compact and broadband polarization beam splitter based on a silicon nitride augmented low-index guiding structure. Opt Lett 41:163–166 Sun X, Alam MZ, Aitchison JS, Mojahedi M (2016) Compact and broadband polarization beam splitter based on a silicon nitride augmented low-index guiding structure. Opt Lett 41:163–166
31.
Zurück zum Zitat Chen L, Doerr CR, Chen Y-K (2011) Compact polarization rotator on silicon for polarization-diversified circuits. Opt Lett 36:469–471 Chen L, Doerr CR, Chen Y-K (2011) Compact polarization rotator on silicon for polarization-diversified circuits. Opt Lett 36:469–471
32.
Zurück zum Zitat Levy JS, Foster MA, Gaeta AL, Lipson M (2011) Harmonic generation in silicon nitride ring resonators. Opt Express 19:11415–11421 Levy JS, Foster MA, Gaeta AL, Lipson M (2011) Harmonic generation in silicon nitride ring resonators. Opt Express 19:11415–11421
33.
Zurück zum Zitat Rahman BMA, Fernandez FA, Davies JB (1991) Review of finite element methods for microwave and optical waveguides. Proc IEEE 79:1442–1448 Rahman BMA, Fernandez FA, Davies JB (1991) Review of finite element methods for microwave and optical waveguides. Proc IEEE 79:1442–1448
34.
Zurück zum Zitat Mabaya N, Lagasse PE, Vandenbulcke P (1981) Finite element analysis waveguides of optical. IEEE Trans Microw Theory Tech 29:600–605 Mabaya N, Lagasse PE, Vandenbulcke P (1981) Finite element analysis waveguides of optical. IEEE Trans Microw Theory Tech 29:600–605
35.
Zurück zum Zitat Yu CP, Chang HC (2004) Yee-mesh-based finite difference eigenmode solver with PML absorbing boundary conditions for optical waveguides and photonic crystal fibers. Opt Express 12:6165–6177 Yu CP, Chang HC (2004) Yee-mesh-based finite difference eigenmode solver with PML absorbing boundary conditions for optical waveguides and photonic crystal fibers. Opt Express 12:6165–6177
36.
Zurück zum Zitat Yao K, Unni R, Zheng Y (2019) Intelligent nanophotonics: merging photonics and artificial intelligence at the nanoscale. Nanophotonics 8:339 Yao K, Unni R, Zheng Y (2019) Intelligent nanophotonics: merging photonics and artificial intelligence at the nanoscale. Nanophotonics 8:339
37.
Zurück zum Zitat Peng H-T, Nahmias MA, de Lima TF, Tait AN, Shastri BJ, Prucnal PR (2018) Neuromorphic photonic integrated circuits. IEEE J Sel Top Quantum Electron 24:6101715 Peng H-T, Nahmias MA, de Lima TF, Tait AN, Shastri BJ, Prucnal PR (2018) Neuromorphic photonic integrated circuits. IEEE J Sel Top Quantum Electron 24:6101715
38.
Zurück zum Zitat Prucnal PR, Shastri BJ (2017) Neuromorphic photonics. CRC Press, Boca Raton Prucnal PR, Shastri BJ (2017) Neuromorphic photonics. CRC Press, Boca Raton
39.
Zurück zum Zitat de Lima TF, Shastri BJ, Tait AN, Nahmias MA, Prucnal PR (2017) Progress in neuromorphic photonics. Nanophotonics 6:577 de Lima TF, Shastri BJ, Tait AN, Nahmias MA, Prucnal PR (2017) Progress in neuromorphic photonics. Nanophotonics 6:577
40.
Zurück zum Zitat Dory C et al (2019) Inverse-designed diamond photonics. Nat Commun 10:3309 Dory C et al (2019) Inverse-designed diamond photonics. Nat Commun 10:3309
41.
Zurück zum Zitat Liu Y et al (2018) Very sharp adiabatic bends based on an inverse design. Opt Lett 43:2482 Liu Y et al (2018) Very sharp adiabatic bends based on an inverse design. Opt Lett 43:2482
42.
Zurück zum Zitat Zejie Yu, Cui H, Sun X (2017) Genetic-algorithm-optimized wideband on-chip polarization rotator with an ultrasmall footprint. Opt Lett 42:3093–3096 Zejie Yu, Cui H, Sun X (2017) Genetic-algorithm-optimized wideband on-chip polarization rotator with an ultrasmall footprint. Opt Lett 42:3093–3096
43.
Zurück zum Zitat Zhang Y, Yang S, Lim AEJ, Lo GQ, Galland C, Baehr-Jones T, Hochberg M (2013) A compact and low loss Y-junction for submicron silicon waveguide. Opt Express 21:1310–1316 Zhang Y, Yang S, Lim AEJ, Lo GQ, Galland C, Baehr-Jones T, Hochberg M (2013) A compact and low loss Y-junction for submicron silicon waveguide. Opt Express 21:1310–1316
44.
Zurück zum Zitat Zejie Yu, Feng A, Xi X, Sun X (2019) Inverse-designed low-loss and wideband polarization-insensitive silicon waveguide crossing. Opt Lett 44:77–80 Zejie Yu, Feng A, Xi X, Sun X (2019) Inverse-designed low-loss and wideband polarization-insensitive silicon waveguide crossing. Opt Lett 44:77–80
45.
Zurück zum Zitat Ke X, Liu L, Wen X, Sun W, Zhang N, Yi N, Sun S, Xiao S, Song Q (2017) Integrated photonic power divider with arbitrary power ratios. Opt Lett 42:855–858 Ke X, Liu L, Wen X, Sun W, Zhang N, Yi N, Sun S, Xiao S, Song Q (2017) Integrated photonic power divider with arbitrary power ratios. Opt Lett 42:855–858
46.
Zurück zum Zitat Lebbe N, Glière A, Hassan K (2019) High-efficiency and broadband photonic polarization rotator based on multilevel shape optimization. Opt Lett 44:1960–1963 Lebbe N, Glière A, Hassan K (2019) High-efficiency and broadband photonic polarization rotator based on multilevel shape optimization. Opt Lett 44:1960–1963
47.
Zurück zum Zitat Lin Z, Liu V, Pestourie R, Johnson SG (2019) Topology optimization of freeform large-area metasurfaces. Opt Express 27:15765–15775 Lin Z, Liu V, Pestourie R, Johnson SG (2019) Topology optimization of freeform large-area metasurfaces. Opt Express 27:15765–15775
48.
Zurück zum Zitat Logan S, Trivedi R, Sapra NV, Piggott AY, Vercruysse D, Vučković J (2018) Fully-automated optimization of grating couplers. Opt Express 26:4023–4034 Logan S, Trivedi R, Sapra NV, Piggott AY, Vercruysse D, Vučković J (2018) Fully-automated optimization of grating couplers. Opt Express 26:4023–4034
49.
Zurück zum Zitat Logan S, Piggott AY, Sapra NV, Petykiewicz J, Vučković J (2018) Inverse design and demonstration of a compact on-chip narrowband three-channel wavelength demultiplexer. ACS Photonics 5:301 Logan S, Piggott AY, Sapra NV, Petykiewicz J, Vučković J (2018) Inverse design and demonstration of a compact on-chip narrowband three-channel wavelength demultiplexer. ACS Photonics 5:301
50.
Zurück zum Zitat Piggott A, Lu J, Lagoudakis K, Petykiewicz J, Babinec T, Vuckovic J (2015) Inverse design and demonstration of a compact and broadband on-chip wavelength demultiplexer. Nat Photonics 9:374–377 Piggott A, Lu J, Lagoudakis K, Petykiewicz J, Babinec T, Vuckovic J (2015) Inverse design and demonstration of a compact and broadband on-chip wavelength demultiplexer. Nat Photonics 9:374–377
51.
Zurück zum Zitat Hegde RS (2020) Photonics inverse design: pairing deep neural networks with evolutionary algorithms. IEEE J Sel Top Quantum Electron 26:1 Hegde RS (2020) Photonics inverse design: pairing deep neural networks with evolutionary algorithms. IEEE J Sel Top Quantum Electron 26:1
52.
Zurück zum Zitat Song J, Tokpanov YS, Chen Y, Fleischman D, Fountaine KT, Atwater HA, Yu Y Optimizing photonic nanostructures via multi-fidelity Gaussian processes. arXiv:1811.07707 Song J, Tokpanov YS, Chen Y, Fleischman D, Fountaine KT, Atwater HA, Yu Y Optimizing photonic nanostructures via multi-fidelity Gaussian processes. arXiv:​1811.​07707
53.
Zurück zum Zitat Garcia-Santiago X et al (2018) Shape design of a reflecting surface using Bayesian optimization. J Phys: Conf Ser 963:012003 Garcia-Santiago X et al (2018) Shape design of a reflecting surface using Bayesian optimization. J Phys: Conf Ser 963:012003
54.
Zurück zum Zitat Gabr AM, Featherston C, Zhang C, Bonfil C, Zhang Q-J, Smy TJ (2019) Design and optimization of optical passive elements using artificial neural networks. J Opt Soc Am B 36:999–1007 Gabr AM, Featherston C, Zhang C, Bonfil C, Zhang Q-J, Smy TJ (2019) Design and optimization of optical passive elements using artificial neural networks. J Opt Soc Am B 36:999–1007
55.
Zurück zum Zitat Alagappan G, Png CE (2019) Universal deep learning representation of effective refractive index for photonics channel waveguides. J Opt Soc Am B 36:2636–2642 Alagappan G, Png CE (2019) Universal deep learning representation of effective refractive index for photonics channel waveguides. J Opt Soc Am B 36:2636–2642
56.
Zurück zum Zitat Hammond AM, Camacho RM (2019) Designing integrated photonic devices using artificial neural networks. Opt Express 27:29620–29638 Hammond AM, Camacho RM (2019) Designing integrated photonic devices using artificial neural networks. Opt Express 27:29620–29638
57.
Zurück zum Zitat Hegde RS (2019) Accelerating optics design optimizations with deep learning. Opt Eng 58:065103 Hegde RS (2019) Accelerating optics design optimizations with deep learning. Opt Eng 58:065103
58.
Zurück zum Zitat Heaton J (2008) Introduction to neural networks for Java, 2nd edn. Heaton Research Inc, Chesterfield Heaton J (2008) Introduction to neural networks for Java, 2nd edn. Heaton Research Inc, Chesterfield
59.
Zurück zum Zitat Moller MF (1993) A scaled conjugate gradient algorithm for fast supervised learning. Neural Netw 6:525 Moller MF (1993) A scaled conjugate gradient algorithm for fast supervised learning. Neural Netw 6:525
60.
Zurück zum Zitat Riedmiller M, Braun H (1993) A direct adaptive method for faster backpropagation learning: The RPROP algorithm. In: Proceedings of the IEEE international conference on neural networks, pp 586–591 Riedmiller M, Braun H (1993) A direct adaptive method for faster backpropagation learning: The RPROP algorithm. In: Proceedings of the IEEE international conference on neural networks, pp 586–591
61.
Zurück zum Zitat James G, Witten D, Hastie T, Tibshirani R (2013) An introduction to statistical learning: with applications in R. Springer, New YorkMATH James G, Witten D, Hastie T, Tibshirani R (2013) An introduction to statistical learning: with applications in R. Springer, New YorkMATH
62.
Zurück zum Zitat Chollet F (2018) Deep learning with python. Manning, New York Chollet F (2018) Deep learning with python. Manning, New York
64.
Zurück zum Zitat Chapre S (2016) Numerical methods for engineers, 7th edn. McGraw-Hill, New York Chapre S (2016) Numerical methods for engineers, 7th edn. McGraw-Hill, New York
65.
Zurück zum Zitat Giacomini R, White H (2006) Test of conditional predictive ability. Econometrica 74(6):1545–1578MathSciNetMATH Giacomini R, White H (2006) Test of conditional predictive ability. Econometrica 74(6):1545–1578MathSciNetMATH
Metadaten
Titel
Prediction of electromagnetic field patterns of optical waveguide using neural network
verfasst von
Gandhi Alagappan
Ching Eng Png
Publikationsdatum
25.06.2020
Verlag
Springer London
Erschienen in
Neural Computing and Applications / Ausgabe 7/2021
Print ISSN: 0941-0643
Elektronische ISSN: 1433-3058
DOI
https://doi.org/10.1007/s00521-020-05061-9

Weitere Artikel der Ausgabe 7/2021

Neural Computing and Applications 7/2021 Zur Ausgabe