Skip to main content

2020 | OriginalPaper | Buchkapitel

11. Prediction of Energy Gaps in Graphene—Hexagonal Boron Nitride Nanoflakes Using Artificial Neural Networks

verfasst von : Tudor Luca Mitran, George Alexandru Nemnes

Erschienen in: Theory and Simulation in Physics for Materials Applications

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Machine learning methods are currently applied in conjunction with ab initio density functional theory (DFT) simulations in order to establish computationally efficient alternatives for high-throughput processing in atomistic computations. The proposed method, based on artificial neural networks (ANNs), was used to predict the HOMO-LUMO energy gap in quasi-0D graphene nanoflake systems with randomly generated boron nitride embedded regions. Several artificial neural network (ANN) algorithms were tested in order to optimize the network parameters for the problem at hand. The trained ANNs prove to be computationally efficient at determining the energy gap with good accuracy and show a significant speedup over the classical DFT approach.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat J. Carrasquilla, R.G. Melko, Machine learning phases of matter. Nat. Phys. 13, 431 (2017)CrossRef J. Carrasquilla, R.G. Melko, Machine learning phases of matter. Nat. Phys. 13, 431 (2017)CrossRef
2.
Zurück zum Zitat A. Tanaka, A. Tomiya, Detection of phase transition via convolutional neural networks. J. Phys. Soc. Japan 86, 063001 (2017)CrossRef A. Tanaka, A. Tomiya, Detection of phase transition via convolutional neural networks. J. Phys. Soc. Japan 86, 063001 (2017)CrossRef
3.
Zurück zum Zitat T. Ohtsuki, T. Ohtsuki, Deep learning the quantum phase transitions in random two-dimensional electron systems. J. Phys. Soc. Japan 85, 123706 (2016)CrossRef T. Ohtsuki, T. Ohtsuki, Deep learning the quantum phase transitions in random two-dimensional electron systems. J. Phys. Soc. Japan 85, 123706 (2016)CrossRef
4.
Zurück zum Zitat L. Wang, Discovering phase transitions with unsupervised learning. Phys. Rev. B 94, 195105 (2016)CrossRef L. Wang, Discovering phase transitions with unsupervised learning. Phys. Rev. B 94, 195105 (2016)CrossRef
5.
Zurück zum Zitat C. Dietz, T. Kretz, M.H. Thoma, Machine-learning approach for local classification of crystalline structures in multiphase systems. Phys. Rev. E 96, 011301 (2017)CrossRef C. Dietz, T. Kretz, M.H. Thoma, Machine-learning approach for local classification of crystalline structures in multiphase systems. Phys. Rev. E 96, 011301 (2017)CrossRef
6.
Zurück zum Zitat Y. Liu, T. Zhao, J. Wangwei, S. Shi, Materials discovery and design using machine learning. J. Materiomics 3, 159–177 (2017)CrossRef Y. Liu, T. Zhao, J. Wangwei, S. Shi, Materials discovery and design using machine learning. J. Materiomics 3, 159–177 (2017)CrossRef
7.
Zurück zum Zitat T. Yamashita, N. Sato, H. Kino, T. Miyake, K. Tsuda, T. Oguchi, Crystal structure prediction accelerated by Bayesian optimization. Phys. Rev. Mater. 2, 013803 (2018)CrossRef T. Yamashita, N. Sato, H. Kino, T. Miyake, K. Tsuda, T. Oguchi, Crystal structure prediction accelerated by Bayesian optimization. Phys. Rev. Mater. 2, 013803 (2018)CrossRef
8.
Zurück zum Zitat Q. Zhou, P. Tang, S. Liu, J. Pan, Q. Yan, S.-C. Zhang, Learning atoms for materials discovery. Proc. Natl. Acad. Sci. 115, E6411–E6417 (2018)CrossRef Q. Zhou, P. Tang, S. Liu, J. Pan, Q. Yan, S.-C. Zhang, Learning atoms for materials discovery. Proc. Natl. Acad. Sci. 115, E6411–E6417 (2018)CrossRef
9.
Zurück zum Zitat B. Kolb, L.C. Lentz, A.M. Kolpak, Discovering charge density functionals and structure-property relationships with prophet: A general framework for coupling machine learning and first-principles methods. Sci. Rep. 7, 1192 (2017) B. Kolb, L.C. Lentz, A.M. Kolpak, Discovering charge density functionals and structure-property relationships with prophet: A general framework for coupling machine learning and first-principles methods. Sci. Rep. 7, 1192 (2017)
10.
Zurück zum Zitat B. Meredig, A. Agrawal, S. Kirklin, J.E. Saal, J.W. Doak, A. Thompson, K. Zhang, A. Choudhary, C. Wolverton, Combinatorial screening for new materials in unconstrained composition space with machine learning. Phys. Rev. B 89, 094104 (2014)CrossRef B. Meredig, A. Agrawal, S. Kirklin, J.E. Saal, J.W. Doak, A. Thompson, K. Zhang, A. Choudhary, C. Wolverton, Combinatorial screening for new materials in unconstrained composition space with machine learning. Phys. Rev. B 89, 094104 (2014)CrossRef
11.
Zurück zum Zitat A. Lopez-Bezanilla, O.A. von Lilienfeld, Modeling electronic quantum transport with machine learning. Phys. Rev. B 89, 235411 (2014)CrossRef A. Lopez-Bezanilla, O.A. von Lilienfeld, Modeling electronic quantum transport with machine learning. Phys. Rev. B 89, 235411 (2014)CrossRef
12.
Zurück zum Zitat A.P. Bartók, S. De, C. Poelking, N. Bernstein, J.R. Kermode, G. Csányi, M. Ceriotti, Machine learning unifies the modeling of materials and molecules. Sci. Adv. 3 (2017)CrossRef A.P. Bartók, S. De, C. Poelking, N. Bernstein, J.R. Kermode, G. Csányi, M. Ceriotti, Machine learning unifies the modeling of materials and molecules. Sci. Adv. 3 (2017)CrossRef
13.
Zurück zum Zitat C.W. Rosenbrock, E.R. Homer, G. Csányi, G.L.W. Hart, Discovering the building blocks of atomic systems using machine learning application: To grain boundaries. npj Comput. Mater. 3, 29 (2017)CrossRef C.W. Rosenbrock, E.R. Homer, G. Csányi, G.L.W. Hart, Discovering the building blocks of atomic systems using machine learning application: To grain boundaries. npj Comput. Mater. 3, 29 (2017)CrossRef
14.
Zurück zum Zitat K. Yao, J.E. Herr, S.N. Brown, J. Parkhill, Intrinsic bond energies from a bonds-in-molecules neural network. J. Phys. Chem. Lett. 8, 2689–2694 (2017)CrossRef K. Yao, J.E. Herr, S.N. Brown, J. Parkhill, Intrinsic bond energies from a bonds-in-molecules neural network. J. Phys. Chem. Lett. 8, 2689–2694 (2017)CrossRef
15.
Zurück zum Zitat G. Hegde, R.C. Bowen, Machine-learned approximations to density functional theory hamiltonians. Sci. Rep. 7, 42669 (2017)CrossRef G. Hegde, R.C. Bowen, Machine-learned approximations to density functional theory hamiltonians. Sci. Rep. 7, 42669 (2017)CrossRef
16.
Zurück zum Zitat X. Qu, D.A.R.S. Latino, J. Aires-de Sousa, A big data approach to the ultra-fast prediction of DFT-calculated bond energies. J. Cheminformatics 5, 34 (2013)CrossRef X. Qu, D.A.R.S. Latino, J. Aires-de Sousa, A big data approach to the ultra-fast prediction of DFT-calculated bond energies. J. Cheminformatics 5, 34 (2013)CrossRef
17.
Zurück zum Zitat J.C. Snyder, M. Rupp, K. Hansen, K.-R. Müller, K. Burke, Finding density functionals with machine learning. Phys. Rev. Lett. 108, 253002 (2012)CrossRef J.C. Snyder, M. Rupp, K. Hansen, K.-R. Müller, K. Burke, Finding density functionals with machine learning. Phys. Rev. Lett. 108, 253002 (2012)CrossRef
19.
Zurück zum Zitat A. Chandrasekaran, D. Kamal, R. Batra, C. Kim, L. Chen, R. Ramprasad, Solving the electronic structure problem with machine learning. npj Comput. Mater. 5, 22 (2019)CrossRef A. Chandrasekaran, D. Kamal, R. Batra, C. Kim, L. Chen, R. Ramprasad, Solving the electronic structure problem with machine learning. npj Comput. Mater. 5, 22 (2019)CrossRef
20.
Zurück zum Zitat G.R. Schleder, A.C.M. Padilha, C.M. Acosta, M. Costa, A. Fazzio, From DFT to machine learning: Recent approaches to materials science–A review. J. Phys.: Mater. 2, 032001 (2019) G.R. Schleder, A.C.M. Padilha, C.M. Acosta, M. Costa, A. Fazzio, From DFT to machine learning: Recent approaches to materials science–A review. J. Phys.: Mater. 2, 032001 (2019)
21.
Zurück zum Zitat F.A. Faber, L. Hutchison, B. Huang, J. Gilmer, S.S. Schoenholz, G.E. Dahl, O. Vinyals, S. Kearnes, P.F. Riley, O.A. von Lilienfeld, Prediction errors of molecular machine learning models lower than hybrid DFT error. J. Chem. Theory Comput. 13, 5255–5264 (2017)CrossRef F.A. Faber, L. Hutchison, B. Huang, J. Gilmer, S.S. Schoenholz, G.E. Dahl, O. Vinyals, S. Kearnes, P.F. Riley, O.A. von Lilienfeld, Prediction errors of molecular machine learning models lower than hybrid DFT error. J. Chem. Theory Comput. 13, 5255–5264 (2017)CrossRef
22.
Zurück zum Zitat D. Dragoni, T.D. Daff, G. Csányi, N. Marzari, Achieving DFT accuracy with a machine-learning interatomic potential: Thermomechanics and defects in BCC ferromagnetic iron. Phys. Rev. Mater. 2, 013808 (2018)CrossRef D. Dragoni, T.D. Daff, G. Csányi, N. Marzari, Achieving DFT accuracy with a machine-learning interatomic potential: Thermomechanics and defects in BCC ferromagnetic iron. Phys. Rev. Mater. 2, 013808 (2018)CrossRef
23.
Zurück zum Zitat F. Brockherde, L. Vogt, L. Li, M.E. Tuckerman, K. Burke, K.-R. Müller, Bypassing the Kohn-Sham equations with machine learning. Nat. Commun. 8, 872 (2017)CrossRef F. Brockherde, L. Vogt, L. Li, M.E. Tuckerman, K. Burke, K.-R. Müller, Bypassing the Kohn-Sham equations with machine learning. Nat. Commun. 8, 872 (2017)CrossRef
24.
Zurück zum Zitat T.L. Jacobsen, M.S. Jørgensen, B. Hammer, On-the-fly machine learning of atomic potential in density functional theory structure optimization. Phys. Rev. Lett. 120, 026102 (2018)CrossRef T.L. Jacobsen, M.S. Jørgensen, B. Hammer, On-the-fly machine learning of atomic potential in density functional theory structure optimization. Phys. Rev. Lett. 120, 026102 (2018)CrossRef
25.
Zurück zum Zitat O. SchÃitt, J. VandeVondele, Machine learning adaptive basis sets for efficient large scale density functional theory simulation. J. Chem. Theory Comput. 14, 4168–4175 (2018)CrossRef O. SchÃitt, J. VandeVondele, Machine learning adaptive basis sets for efficient large scale density functional theory simulation. J. Chem. Theory Comput. 14, 4168–4175 (2018)CrossRef
26.
Zurück zum Zitat A. Grisafi, A. Fabrizio, B. Meyer, D.M. Wilkins, C. Corminboeuf, M. Ceriotti, Transferable machine-learning model of the electron density. ACS Central Sci. 5, 57–64 (2019)CrossRef A. Grisafi, A. Fabrizio, B. Meyer, D.M. Wilkins, C. Corminboeuf, M. Ceriotti, Transferable machine-learning model of the electron density. ACS Central Sci. 5, 57–64 (2019)CrossRef
27.
Zurück zum Zitat J. Nelson, R. Tiwari, S. Sanvito, Machine learning density functional theory for the Hubbard model. Phys. Rev. B 99, 075132 (2019)CrossRef J. Nelson, R. Tiwari, S. Sanvito, Machine learning density functional theory for the Hubbard model. Phys. Rev. B 99, 075132 (2019)CrossRef
28.
Zurück zum Zitat X. Feng, S. Kwon, J.Y. Park, M. Salmeron, Superlubric sliding of graphene nanoflakes on graphene. ACS Nano 7, 1718–1724 (2013)CrossRef X. Feng, S. Kwon, J.Y. Park, M. Salmeron, Superlubric sliding of graphene nanoflakes on graphene. ACS Nano 7, 1718–1724 (2013)CrossRef
29.
Zurück zum Zitat J. Zhang, E. Osloub, F. Siddiqui, W. Zhang, T. Ragab, C. Basaran, Anisotropy of graphene nanoflake diamond interface frictional properties. Materials 12, 1425 (2019)CrossRef J. Zhang, E. Osloub, F. Siddiqui, W. Zhang, T. Ragab, C. Basaran, Anisotropy of graphene nanoflake diamond interface frictional properties. Materials 12, 1425 (2019)CrossRef
30.
Zurück zum Zitat C. Mansilla Wettstein, F.P. Bonafé, M.B. Oviedo, C.G. Sánchez, Optical properties of graphene nanoflakes: Shape matters. J. Chem. Phys. 144, 224305 (2016)CrossRef C. Mansilla Wettstein, F.P. Bonafé, M.B. Oviedo, C.G. Sánchez, Optical properties of graphene nanoflakes: Shape matters. J. Chem. Phys. 144, 224305 (2016)CrossRef
31.
Zurück zum Zitat C. Cocchi, D. Prezzi, A. Ruini, M.J. Caldas, E. Molinari, Electronics and optics of graphene nanoflakes: Edge functionalization and structural distortions. J. Phys. Chem. C 116, 17328–17335 (2012)CrossRef C. Cocchi, D. Prezzi, A. Ruini, M.J. Caldas, E. Molinari, Electronics and optics of graphene nanoflakes: Edge functionalization and structural distortions. J. Phys. Chem. C 116, 17328–17335 (2012)CrossRef
32.
Zurück zum Zitat A.M. Silva, M.S. Pires, V.N. Freire, E.L. Albuquerque, D.L. Azevedo, E.W.S. Caetano, Graphene nanoflakes: Thermal stability, infrared signatures, and potential applications in the field of spintronics and optical nanodevices. J. Phys. Chem. C 114, 17472–17485 (2010)CrossRef A.M. Silva, M.S. Pires, V.N. Freire, E.L. Albuquerque, D.L. Azevedo, E.W.S. Caetano, Graphene nanoflakes: Thermal stability, infrared signatures, and potential applications in the field of spintronics and optical nanodevices. J. Phys. Chem. C 114, 17472–17485 (2010)CrossRef
33.
Zurück zum Zitat S.K. Singh, M. Neek-Amal, F.M. Peeters, Electronic properties of graphene nano-flakes: Energy gap, permanent dipole, termination effect, and Raman spectroscopy. J. Chem. Phys. 140(7), 074304 (2014)CrossRef S.K. Singh, M. Neek-Amal, F.M. Peeters, Electronic properties of graphene nano-flakes: Energy gap, permanent dipole, termination effect, and Raman spectroscopy. J. Chem. Phys. 140(7), 074304 (2014)CrossRef
34.
Zurück zum Zitat A. Kuc, T. Heine, G. Seifert, Structural and electronic properties of graphene nanoflakes. Phys. Rev. B 81, 085430 (2010)CrossRef A. Kuc, T. Heine, G. Seifert, Structural and electronic properties of graphene nanoflakes. Phys. Rev. B 81, 085430 (2010)CrossRef
35.
Zurück zum Zitat W.L. Wang, S. Meng, E. Kaxiras, Graphene nanoflakes with large spin. Nano Lett. 8, 241–245 (2008)CrossRef W.L. Wang, S. Meng, E. Kaxiras, Graphene nanoflakes with large spin. Nano Lett. 8, 241–245 (2008)CrossRef
36.
Zurück zum Zitat V. Castagnola, W. Zhao, L. Boselli, M.C.L. Giudice, F. Meder, E. Polo, K.R. Paton, C. Backes, J.N. Coleman, K.A. Dawson, Biological recognition of graphene nanoflakes. Nat. Commun. 9, 1577 (2018)CrossRef V. Castagnola, W. Zhao, L. Boselli, M.C.L. Giudice, F. Meder, E. Polo, K.R. Paton, C. Backes, J.N. Coleman, K.A. Dawson, Biological recognition of graphene nanoflakes. Nat. Commun. 9, 1577 (2018)CrossRef
37.
Zurück zum Zitat S. Meenakshi, S.J. Sophia, K. Pandian, High surface graphene nanoflakes as sensitive sensing platform for simultaneous electrochemical detection of metronidazole and chloramphenicol. Mater. Sci. Eng.: C 90, 407–419 (2018)CrossRef S. Meenakshi, S.J. Sophia, K. Pandian, High surface graphene nanoflakes as sensitive sensing platform for simultaneous electrochemical detection of metronidazole and chloramphenicol. Mater. Sci. Eng.: C 90, 407–419 (2018)CrossRef
38.
Zurück zum Zitat L. Liu, M. Zhou, L. Jin, L. Li, Y. Mo, S. Guoshi, X. Li, H. Zhu, Y. Tian, Recent advances in friction and lubrication of graphene and other 2D materials: Mechanisms and applications. Friction 7, 199 (2019)CrossRef L. Liu, M. Zhou, L. Jin, L. Li, Y. Mo, S. Guoshi, X. Li, H. Zhu, Y. Tian, Recent advances in friction and lubrication of graphene and other 2D materials: Mechanisms and applications. Friction 7, 199 (2019)CrossRef
39.
Zurück zum Zitat J. Wu, W. Pisula, K. Müllen, Graphenes as potential material for electronics. Chem. Rev. 107, 718–747 (2007)CrossRef J. Wu, W. Pisula, K. Müllen, Graphenes as potential material for electronics. Chem. Rev. 107, 718–747 (2007)CrossRef
40.
Zurück zum Zitat L. Zhi, K. Mullen, A bottom-up approach from molecular nanographenes to unconventional carbon materials. J. Mater. Chem. 18, 1472–1484 (2008)CrossRef L. Zhi, K. Mullen, A bottom-up approach from molecular nanographenes to unconventional carbon materials. J. Mater. Chem. 18, 1472–1484 (2008)CrossRef
41.
Zurück zum Zitat S. Neubeck, L.A. Ponomarenko, F. Freitag, A.J.M. Giesbers, U. Zeitler, S.V. Morozov, P. Blake, A.K. Geim, K.S. Novoselov, From one electron to one hole: Quasiparticle counting in graphene quantum dots determined by electrochemical and plasma etching. Small 6, 1469–1473 (2010)CrossRef S. Neubeck, L.A. Ponomarenko, F. Freitag, A.J.M. Giesbers, U. Zeitler, S.V. Morozov, P. Blake, A.K. Geim, K.S. Novoselov, From one electron to one hole: Quasiparticle counting in graphene quantum dots determined by electrochemical and plasma etching. Small 6, 1469–1473 (2010)CrossRef
42.
Zurück zum Zitat S. Mutyala, J. Mathiyarasu, Preparation of graphene nanoflakes and its application for detection of hydrazine. Sens. Actuators B: Chem. 210, 692–699 (2015)CrossRef S. Mutyala, J. Mathiyarasu, Preparation of graphene nanoflakes and its application for detection of hydrazine. Sens. Actuators B: Chem. 210, 692–699 (2015)CrossRef
43.
Zurück zum Zitat C. Berger, Z. Song, X. Li, W. Xiaosong, N. Brown, C. Naud, D. Mayou, T. Li, J. Hass, A.N. Marchenkov, E.H. Conrad, P.N. First, W.A. de Heer, Electronic confinement and coherence in patterned epitaxial graphene. Science 312, 1191–1196 (2006)CrossRef C. Berger, Z. Song, X. Li, W. Xiaosong, N. Brown, C. Naud, D. Mayou, T. Li, J. Hass, A.N. Marchenkov, E.H. Conrad, P.N. First, W.A. de Heer, Electronic confinement and coherence in patterned epitaxial graphene. Science 312, 1191–1196 (2006)CrossRef
44.
Zurück zum Zitat G.A. Nemnes, T.L. Mitran, A. Manolescu, Gap prediction in hybrid graphene—Hexagonal boron nitride nanoflakes using artificial neural networks. J. Nanomater. 2019, 6960787 (2019)CrossRef G.A. Nemnes, T.L. Mitran, A. Manolescu, Gap prediction in hybrid graphene—Hexagonal boron nitride nanoflakes using artificial neural networks. J. Nanomater. 2019, 6960787 (2019)CrossRef
45.
Zurück zum Zitat J.M. Soler, E. Artacho, J.D. Gale, A. García, J. Junquera, P. Ordejón, D. Sánchez-Portal, The SIESTA method forab initioorder-nmaterials simulation. J. Phys.: Condens. Matter 14, 2745–2779 (2002) J.M. Soler, E. Artacho, J.D. Gale, A. García, J. Junquera, P. Ordejón, D. Sánchez-Portal, The SIESTA method forab initioorder-nmaterials simulation. J. Phys.: Condens. Matter 14, 2745–2779 (2002)
46.
Zurück zum Zitat D.M. Ceperley, B.J. Alder, Ground state of the electron gas by a stochastic method. Phys. Rev. Lett. 45, 566–569 (1980)CrossRef D.M. Ceperley, B.J. Alder, Ground state of the electron gas by a stochastic method. Phys. Rev. Lett. 45, 566–569 (1980)CrossRef
47.
Zurück zum Zitat N. Troullier, J.L. Martins, Efficient pseudopotentials for plane-wave calculations. Phys. Rev. B 43, 1993–2006 (1991)CrossRef N. Troullier, J.L. Martins, Efficient pseudopotentials for plane-wave calculations. Phys. Rev. B 43, 1993–2006 (1991)CrossRef
48.
Zurück zum Zitat M. Abadi, P. Barham, J. Chen, Z. Chen, A. Davis, J. Dean, M. Devin, S. Ghemawat, G. Irving, M. Isard, M. Kudlur, J. Levenberg, R. Monga, S. Moore, D.G. Murray, B. Steiner, P.A. Tucker, V. Vasudevan, P. Warden, M. Wicke, Y. Yu, X. Zhang, Tensorflow: A system for large-scale machine learning. CoRR abs/1605.08695 (2016) M. Abadi, P. Barham, J. Chen, Z. Chen, A. Davis, J. Dean, M. Devin, S. Ghemawat, G. Irving, M. Isard, M. Kudlur, J. Levenberg, R. Monga, S. Moore, D.G. Murray, B. Steiner, P.A. Tucker, V. Vasudevan, P. Warden, M. Wicke, Y. Yu, X. Zhang, Tensorflow: A system for large-scale machine learning. CoRR abs/1605.08695 (2016)
Metadaten
Titel
Prediction of Energy Gaps in Graphene—Hexagonal Boron Nitride Nanoflakes Using Artificial Neural Networks
verfasst von
Tudor Luca Mitran
George Alexandru Nemnes
Copyright-Jahr
2020
DOI
https://doi.org/10.1007/978-3-030-37790-8_11

Neuer Inhalt