Skip to main content
Erschienen in: Acta Mechanica 8/2019

10.05.2019 | Original Paper

Prediction of interface stiffness of single-walled carbon nanotube-reinforced polymer composites by shear-lag model

verfasst von: Yan-Gao Hu, Y. F. Li, J. Han, C. P. Hu, Zh. h. Chen, S. T. Gu

Erschienen in: Acta Mechanica | Ausgabe 8/2019

Einloggen, um Zugang zu erhalten

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Interfacial stress transfer of single-walled carbon nanotube-reinforced polymer composites subjected to uniaxial tension was investigated by a newly developed shear-lag model integrated with a spring layer model. A linear relationship between the tangential relative displacement and the interfacial shear stress was assumed for the interface which is determined by van der Waals forces. The interface stiffness parameter was determined through comparing the stress distribution of the shear-lag model with multiscale simulation results. The effect of the interface stiffness and the nanotube’s aspect ratios on the distribution of stress in CNT-reinforced composites was studied.
Literatur
1.
Zurück zum Zitat Thostenson, E.T., Ren, Z.F., Chou, T.W.: Advances in the science and technology of carbon nanotubes and their composites: a review. Compos. Sci. Technol. 61(13), 1899–1912 (2001)CrossRef Thostenson, E.T., Ren, Z.F., Chou, T.W.: Advances in the science and technology of carbon nanotubes and their composites: a review. Compos. Sci. Technol. 61(13), 1899–1912 (2001)CrossRef
2.
Zurück zum Zitat Maruyama, B., Alam, H.: Carbon nanotubes and nanofibers in composite materials. Sampe J. 38(3), 59–70 (2002) Maruyama, B., Alam, H.: Carbon nanotubes and nanofibers in composite materials. Sampe J. 38(3), 59–70 (2002)
3.
Zurück zum Zitat Ajayan, P.M., Schadler, L.S., Giannaris, C., Rubio, A.: Single-walled carbon nanotube–polymer composites: strength and weakness. Adv. Mater. 12(10), 750–753 (2000)CrossRef Ajayan, P.M., Schadler, L.S., Giannaris, C., Rubio, A.: Single-walled carbon nanotube–polymer composites: strength and weakness. Adv. Mater. 12(10), 750–753 (2000)CrossRef
4.
Zurück zum Zitat Schadler, L.S., Giannaris, S.C., Ajayan, P.M.: Load transfer in carbon nanotube epoxy composites. Appl. Phys. Lett. 73(26), 3842–3844 (1998)CrossRef Schadler, L.S., Giannaris, S.C., Ajayan, P.M.: Load transfer in carbon nanotube epoxy composites. Appl. Phys. Lett. 73(26), 3842–3844 (1998)CrossRef
5.
Zurück zum Zitat Qian, D., Dickey, E.C., Andrews, R., Rantell, T.: Load transfer and deformation mechanisms in carbon nanotube–polystyrene composites. Appl. Phys. Lett. 76(20), 2868–2870 (2000)CrossRef Qian, D., Dickey, E.C., Andrews, R., Rantell, T.: Load transfer and deformation mechanisms in carbon nanotube–polystyrene composites. Appl. Phys. Lett. 76(20), 2868–2870 (2000)CrossRef
6.
Zurück zum Zitat Chang, B.H., Liu, Z.Q., Sun, L.F., Tang, D.S., Zhou, W.Y., Wang, G., Qian, L.X., Xie, S.S., Fen, J.H., Wan, M.X.: Conductivity and magnetic susceptibility of nanotube/polypyrrole nanocomposites. J. Low. Temp. Phys. 119(1), 41–48 (2000)CrossRef Chang, B.H., Liu, Z.Q., Sun, L.F., Tang, D.S., Zhou, W.Y., Wang, G., Qian, L.X., Xie, S.S., Fen, J.H., Wan, M.X.: Conductivity and magnetic susceptibility of nanotube/polypyrrole nanocomposites. J. Low. Temp. Phys. 119(1), 41–48 (2000)CrossRef
7.
Zurück zum Zitat Barber, A.H., Cohen, S.R., Wagner, H.D.: Measurement of carbon nanotube–polymer interfacial strength. Appl. Phys. Lett. 82(23), 4140–4142 (2003)CrossRef Barber, A.H., Cohen, S.R., Wagner, H.D.: Measurement of carbon nanotube–polymer interfacial strength. Appl. Phys. Lett. 82(23), 4140–4142 (2003)CrossRef
8.
Zurück zum Zitat Chen, X.M., Zheng, M., Park, C., Ke, C.H.: Direct measurements of the mechanical strength of carbon nanotube–poly(methyl methacrylate) interfaces. Small 9(19), 3345–3351 (2013) Chen, X.M., Zheng, M., Park, C., Ke, C.H.: Direct measurements of the mechanical strength of carbon nanotube–poly(methyl methacrylate) interfaces. Small 9(19), 3345–3351 (2013)
9.
Zurück zum Zitat Lordi, V., Yao, N.: Molecular mechanics of binding in carbon–nanotube–polymer composites. J. Mater. Res. 15(12), 2770–2779 (2000)CrossRef Lordi, V., Yao, N.: Molecular mechanics of binding in carbon–nanotube–polymer composites. J. Mater. Res. 15(12), 2770–2779 (2000)CrossRef
10.
Zurück zum Zitat Liao, K., Li, S.: Interfacial characteristics of a carbon nanotube–polystyrene composite system. Appl. Phys. Lett. 79(25), 4225–4227 (2001)CrossRef Liao, K., Li, S.: Interfacial characteristics of a carbon nanotube–polystyrene composite system. Appl. Phys. Lett. 79(25), 4225–4227 (2001)CrossRef
11.
Zurück zum Zitat Subramanian, N., Rai, A., Chattopadhyay, A.: Atomistically derived cohesive behavior of interphases in carbon fiber reinforced CNT nanocomposites. Carbon 117, 55–64 (2017)CrossRef Subramanian, N., Rai, A., Chattopadhyay, A.: Atomistically derived cohesive behavior of interphases in carbon fiber reinforced CNT nanocomposites. Carbon 117, 55–64 (2017)CrossRef
12.
Zurück zum Zitat Frankland, S.J.V., Harik, V.M.: Analysis of carbon nanotube pull-out from a polymer matrix. Surf. Sci. 525(1), L103–L108 (2003)CrossRef Frankland, S.J.V., Harik, V.M.: Analysis of carbon nanotube pull-out from a polymer matrix. Surf. Sci. 525(1), L103–L108 (2003)CrossRef
13.
Zurück zum Zitat Frankland, S.J.V., Caglar, A., Brenner, D.W., Griebel, M.: Molecular simulation of the influence of chemical cross-links on the shear strength of carbon nanotube–polymer interfaces. J. Phys. Chem. B 106(12), 3046–3048 (2002)CrossRef Frankland, S.J.V., Caglar, A., Brenner, D.W., Griebel, M.: Molecular simulation of the influence of chemical cross-links on the shear strength of carbon nanotube–polymer interfaces. J. Phys. Chem. B 106(12), 3046–3048 (2002)CrossRef
14.
Zurück zum Zitat Frankland, S.J.V., Harik, V.M., Odegard, G.M., Brenner, D.W., Gates, T.S.: The stress–strain behavior of polymer–nanotube composites from molecular dynamics simulation. Compos. Sci. Technol. 63(11), 1655–1661 (2003)CrossRef Frankland, S.J.V., Harik, V.M., Odegard, G.M., Brenner, D.W., Gates, T.S.: The stress–strain behavior of polymer–nanotube composites from molecular dynamics simulation. Compos. Sci. Technol. 63(11), 1655–1661 (2003)CrossRef
15.
Zurück zum Zitat Gou, J.H., Minaie, B., Wang, B., Liang, Z.Y., Zhang, C.: Computational and experimental study of interfacial bonding of single-walled nanotube reinforced composites. Comput. Mater. Sci. 31(3–4), 225–236 (2004)CrossRef Gou, J.H., Minaie, B., Wang, B., Liang, Z.Y., Zhang, C.: Computational and experimental study of interfacial bonding of single-walled nanotube reinforced composites. Comput. Mater. Sci. 31(3–4), 225–236 (2004)CrossRef
16.
Zurück zum Zitat Xiong, Q.L., Meguid, S.A.: Atomistic investigation of the interfacial mechanical characteristics of carbon nanotube reinforced epoxy composite. Eur. Polym. J. 69, 1–15 (2015)CrossRef Xiong, Q.L., Meguid, S.A.: Atomistic investigation of the interfacial mechanical characteristics of carbon nanotube reinforced epoxy composite. Eur. Polym. J. 69, 1–15 (2015)CrossRef
17.
Zurück zum Zitat Wagner, H.D.: Nanotube-polymer adhesion: a mechanics approach. Chem. Phys. Lett. 361(1–2), 57–61 (2002)CrossRef Wagner, H.D.: Nanotube-polymer adhesion: a mechanics approach. Chem. Phys. Lett. 361(1–2), 57–61 (2002)CrossRef
18.
Zurück zum Zitat Gao, X.L., Li, K.: A shear-lag model for carbon nanotube-reinforced polymer composites. Int. J. Solids. Struct. 42(5–6), 1649–1667 (2005)CrossRefMATH Gao, X.L., Li, K.: A shear-lag model for carbon nanotube-reinforced polymer composites. Int. J. Solids. Struct. 42(5–6), 1649–1667 (2005)CrossRefMATH
19.
Zurück zum Zitat Tsai, J.L., Lu, T.C.: Investigating the load transfer efficiency in carbon nanotubes reinforced nanocomposites. Compos. Struct. 90(2), 172–179 (2009)CrossRef Tsai, J.L., Lu, T.C.: Investigating the load transfer efficiency in carbon nanotubes reinforced nanocomposites. Compos. Struct. 90(2), 172–179 (2009)CrossRef
20.
Zurück zum Zitat Ayatollahi, M.R., Shadlou, S., Shokrieh, M.M.: Multiscale modeling for mechanical properties of carbon nanotube reinforced nanocomposites subjected to different types of loading. Compos. Struct. 93(9), 2250–2259 (2011)CrossRef Ayatollahi, M.R., Shadlou, S., Shokrieh, M.M.: Multiscale modeling for mechanical properties of carbon nanotube reinforced nanocomposites subjected to different types of loading. Compos. Struct. 93(9), 2250–2259 (2011)CrossRef
21.
Zurück zum Zitat Li, C.Y., Chou, T.W.: Multiscale modeling of carbon nanotube reinforced polymer composites. J. Nanosci. Nanotechnol. 3(5), 423–430 (2003)CrossRef Li, C.Y., Chou, T.W.: Multiscale modeling of carbon nanotube reinforced polymer composites. J. Nanosci. Nanotechnol. 3(5), 423–430 (2003)CrossRef
22.
Zurück zum Zitat Alian, A.R., Kundalwal, S.I., Meguid, S.A.: Multiscale modeling of carbon nanotube epoxy composites. Polymer 70, 149–160 (2015)CrossRef Alian, A.R., Kundalwal, S.I., Meguid, S.A.: Multiscale modeling of carbon nanotube epoxy composites. Polymer 70, 149–160 (2015)CrossRef
23.
Zurück zum Zitat Thostenson, E.T., Chou, T.W.: On the elastic properties of carbon nanotube-based composites: modelling and characterization. J. Phys. D. Appl. Phys. 36(5), 573–582 (2003)CrossRef Thostenson, E.T., Chou, T.W.: On the elastic properties of carbon nanotube-based composites: modelling and characterization. J. Phys. D. Appl. Phys. 36(5), 573–582 (2003)CrossRef
24.
Zurück zum Zitat Cox, H.L.: The elasticity and strength of paper and other fibrous materials. Br. J. Appl. Phys. 3(3), 72 (1952)CrossRef Cox, H.L.: The elasticity and strength of paper and other fibrous materials. Br. J. Appl. Phys. 3(3), 72 (1952)CrossRef
25.
Zurück zum Zitat McCartney, L.N.: Analytical models of stress transfer in unidirectional composites and cross-ply laminates, and their application to the prediction of matrix/transverse cracking. In: Reddy, J.N., Reifsnider, K.L. (eds.) Local Mechanics Concepts for Composite Material Systems, pp. 251–282. Springer, Berlin (1992)CrossRef McCartney, L.N.: Analytical models of stress transfer in unidirectional composites and cross-ply laminates, and their application to the prediction of matrix/transverse cracking. In: Reddy, J.N., Reifsnider, K.L. (eds.) Local Mechanics Concepts for Composite Material Systems, pp. 251–282. Springer, Berlin (1992)CrossRef
26.
Zurück zum Zitat Nairn, J.A.: On the use of shear-lag methods for analysis of stress transfer unidirectional composites. Mech. Mater. 26(2), 63–80 (1997)CrossRef Nairn, J.A.: On the use of shear-lag methods for analysis of stress transfer unidirectional composites. Mech. Mater. 26(2), 63–80 (1997)CrossRef
27.
Zurück zum Zitat Haque, A., Ramasetty, A.: Theoretical study of stress transfer in carbon nanotube reinforced polymer matrix composites. Compos. Struct. 71(1), 68–77 (2005)CrossRef Haque, A., Ramasetty, A.: Theoretical study of stress transfer in carbon nanotube reinforced polymer matrix composites. Compos. Struct. 71(1), 68–77 (2005)CrossRef
28.
Zurück zum Zitat Ang, K.K., Ahmed, K.S.: An improved shear-lag model for carbon nanotube reinforced polymer composites. Compos. Part. B Eng. 50, 7–14 (2013)CrossRef Ang, K.K., Ahmed, K.S.: An improved shear-lag model for carbon nanotube reinforced polymer composites. Compos. Part. B Eng. 50, 7–14 (2013)CrossRef
29.
Zurück zum Zitat Guo, G.D., Zhu, Y.: Cohesive-shear-lag modeling of interfacial stress transfer between a monolayer graphene and a polymer substrate. J. Appl. Mech. 82(3), 031005 (2015)CrossRef Guo, G.D., Zhu, Y.: Cohesive-shear-lag modeling of interfacial stress transfer between a monolayer graphene and a polymer substrate. J. Appl. Mech. 82(3), 031005 (2015)CrossRef
30.
Zurück zum Zitat Ansari, R., Rouhi, S., Momen, A.: Predicting mechanical properties and buckling behavior of single-walled silicon carbide nanocones using a finite element method. Appl. Phys. A 119(3), 1039–1045 (2015)CrossRef Ansari, R., Rouhi, S., Momen, A.: Predicting mechanical properties and buckling behavior of single-walled silicon carbide nanocones using a finite element method. Appl. Phys. A 119(3), 1039–1045 (2015)CrossRef
31.
Zurück zum Zitat Lene, F.: Homogenized constitutive law for a partially cohesive composite material. Int. J. Solids Struct. 18(5), 443–458 (1982)MathSciNetCrossRefMATH Lene, F.: Homogenized constitutive law for a partially cohesive composite material. Int. J. Solids Struct. 18(5), 443–458 (1982)MathSciNetCrossRefMATH
Metadaten
Titel
Prediction of interface stiffness of single-walled carbon nanotube-reinforced polymer composites by shear-lag model
verfasst von
Yan-Gao Hu
Y. F. Li
J. Han
C. P. Hu
Zh. h. Chen
S. T. Gu
Publikationsdatum
10.05.2019
Verlag
Springer Vienna
Erschienen in
Acta Mechanica / Ausgabe 8/2019
Print ISSN: 0001-5970
Elektronische ISSN: 1619-6937
DOI
https://doi.org/10.1007/s00707-019-02426-7

Weitere Artikel der Ausgabe 8/2019

Acta Mechanica 8/2019 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.