Skip to main content
main-content

Tipp

Weitere Artikel dieser Ausgabe durch Wischen aufrufen

26.10.2019 | Original Paper | Ausgabe 1/2020

Health and Technology 1/2020

Prediction of medical device performance using machine learning techniques: infant incubator case study

Zeitschrift:
Health and Technology > Ausgabe 1/2020
Autoren:
Živorad Kovačević, Lejla Gurbeta Pokvić, Lemana Spahić, Almir Badnjević
Wichtige Hinweise

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Abstract

With development in the area of electronics and artificial intelligence (AI), medical devices (MD) have been sophisticated as well. MD management strategies today are very different than decades ago, so it is reasonable to consider how we can prepare for where we are going in the future. This paper presents the result of application of machine learning (ML) techniques in management of infant incubators in healthcare institutions. A total of 140 samples was used for development of Expert system based on ML classifiers. These samples were collected during 2015–2017 period, as part of yearly inspections of incubators in healthcare institutions by ISO 17020 accredited laboratory. Dataset division 80–20 was used for classifiers development and validation. Performance of the following machine learning algorithms was investigated: Naïve Bayes (NB), Decision Tree (DT), Random Forest (RF), k-Nearest Neighbour (kNN), and Support Vector Machine (SVM). Resulting classifiers were compared by performance and classifier based on Decision Tree algorithm yielded highest accuracy (98.5%) among other tested systems. Obtained results suggest that by introducing ML algorithms in MD management strategies benefit healthcare institution firstly in terms of increase of safety and quality of patient diagnosis and treatments, but also in cost optimization and resource management.

Bitte loggen Sie sich ein, um Zugang zu diesem Inhalt zu erhalten

Sie möchten Zugang zu diesem Inhalt erhalten? Dann informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 69.000 Bücher
  • über 500 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Umwelt
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Testen Sie jetzt 30 Tage kostenlos.

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 58.000 Bücher
  • über 300 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Testen Sie jetzt 30 Tage kostenlos.

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 50.000 Bücher
  • über 380 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Umwelt
  • Maschinenbau + Werkstoffe




Testen Sie jetzt 30 Tage kostenlos.

Literatur
Über diesen Artikel

Weitere Artikel der Ausgabe 1/2020

Health and Technology 1/2020 Zur Ausgabe

Premium Partner

    Bildnachweise