Skip to main content
Erschienen in: Metallurgist 9-10/2019

29.01.2019

Prediction of Potential Fracturing During Radial-Shear Rolling of Continuously Cast Copper Billets by Means of Computer Simulation

verfasst von: M. M. Skripalenko, S. P. Galkin, Her Jae Sung, B. A. Romantsev, Tran Ba Huy, M. N. Skripalenko, L. M. Kaputkina, A. A. Sidorow

Erschienen in: Metallurgist | Ausgabe 9-10/2019

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Based on the results of experimental radial-shear rolling of continuously cast anodic copper billets (rods) using a 10-30 mini-mill at 750 and 850°C, a part-through fracturing from within the billets has been discovered. The volume of cavities formed as a result of such fracturing appears to be more significant at 750°C. A simulation of rolling under experimental conditions was performed using DEFORM software, and the efficiency of applying a finite-element analysis computing environment for predicting fracturing was evaluated. An adequate correlation was established between the obtained estimates of the metal ductility under different deformation temperatures, as well as the probability of formation and dimensions of discontinuities and experimental data. The comparison between the shrinkage cavity depths of the billets based on the results of computer simulation has shown that the ductility of the rod material is higher at 800°C. Based on the analysis of variation in values of the rigidity coefficient under stress condition along the radius of the billet near the end of it, as well as analysis of the path described by the points located along the billet radius in the “cumulative deformation – rigidity coefficient under stress condition” coordinates while in the deformation zone, obtained as a result of computer simulation, it has been established that fracturing at 750°C should be more significant than at 800°C. Recommendations are provided regarding further use of the results of computer simulation to estimate the size of the regions, within which fracturing is expected to occur under the given rolling conditions.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat A. N. Nikulin, Screw Rolling. Stresses and Strains [in Russian], Metallurgizdat, Moscow (2015). A. N. Nikulin, Screw Rolling. Stresses and Strains [in Russian], Metallurgizdat, Moscow (2015).
2.
Zurück zum Zitat I. N. Potapov and P. I. Polukhin, Screw Rolling Technology [in Russian], Metallurgia, Moscow (1990). I. N. Potapov and P. I. Polukhin, Screw Rolling Technology [in Russian], Metallurgia, Moscow (1990).
3.
Zurück zum Zitat S. P. Galkin, B. A. Romantsev, and E. A. Kharitonov, “Putting into practice innovative potential in the universal radial-shear rolling process,” CIS Iron and Steel Review, 2014, Issue 9, 35–39 (2014). S. P. Galkin, B. A. Romantsev, and E. A. Kharitonov, “Putting into practice innovative potential in the universal radial-shear rolling process,” CIS Iron and Steel Review, 2014, Issue 9, 35–39 (2014).
4.
Zurück zum Zitat S. P. Galkin, Theory and Technology of Stationary Screw Rolling of Billets and Rods Made of Low-Ductility Steels and Alloys, D. Sc. Dissertation, Moscow (1998). S. P. Galkin, Theory and Technology of Stationary Screw Rolling of Billets and Rods Made of Low-Ductility Steels and Alloys, D. Sc. Dissertation, Moscow (1998).
6.
Zurück zum Zitat M. M. Skripalenko, B. A. Romantsev, S. P. Galkin, et al., “Predicting metal fracturing during screw rolling in a two-roll mill,” Metallurg, No. 11, 11–18 (2017). M. M. Skripalenko, B. A. Romantsev, S. P. Galkin, et al., “Predicting metal fracturing during screw rolling in a two-roll mill,” Metallurg, No. 11, 11–18 (2017).
7.
Zurück zum Zitat A. Gryc, T. Bajor, and H. Dyha, “The analysis of influence of the parameters of rolling process in three high skew rolling mill of AZ31 magnesium alloy bars on temperature distribution,” Metalurgia, 55, No. 4, 772–774 (2016). A. Gryc, T. Bajor, and H. Dyha, “The analysis of influence of the parameters of rolling process in three high skew rolling mill of AZ31 magnesium alloy bars on temperature distribution,” Metalurgia, 55, No. 4, 772–774 (2016).
8.
Zurück zum Zitat G. X. Huang, B. S. Sun, W. F. Peng, et al., “Research on stable forming of titanium alloy bar using three-roll skew rolling,” Advanced Materials Research, 1095, 837–841 (2015).CrossRef G. X. Huang, B. S. Sun, W. F. Peng, et al., “Research on stable forming of titanium alloy bar using three-roll skew rolling,” Advanced Materials Research, 1095, 837–841 (2015).CrossRef
9.
Zurück zum Zitat A. Stefanik, P. Szota, S. Mroz, and H. Dyja, “Application of the three-high skew rolling to magnesium rods production,” Mat. Testing, 58, No. 5, 438–441 (2016).CrossRef A. Stefanik, P. Szota, S. Mroz, and H. Dyja, “Application of the three-high skew rolling to magnesium rods production,” Mat. Testing, 58, No. 5, 438–441 (2016).CrossRef
10.
Zurück zum Zitat N. Lopatin, “Effect of hot rolling by screw mill on microstructure of a Ti–6Al–4V titanium alloy,” Int. J. Material Forming, 6, No. 4, 459–465 (2012).CrossRef N. Lopatin, “Effect of hot rolling by screw mill on microstructure of a Ti–6Al–4V titanium alloy,” Int. J. Material Forming, 6, No. 4, 459–465 (2012).CrossRef
11.
Zurück zum Zitat N. Lopatin, G. Salishchev, and S. Galkin, “Mathematical modeling of radial-shear rolling of the VT6 titanium alloy under conditions of formation of a globular structure,” Russian J. Non-Ferrous Metals, 52, No. 5, 442–447 (2011).CrossRef N. Lopatin, G. Salishchev, and S. Galkin, “Mathematical modeling of radial-shear rolling of the VT6 titanium alloy under conditions of formation of a globular structure,” Russian J. Non-Ferrous Metals, 52, No. 5, 442–447 (2011).CrossRef
12.
Zurück zum Zitat S. P. Galkin, “Trajectory of deformed metal as basis for controlling the radial-shift and screw rolling,” Stal, 7, 63–66 (2004). S. P. Galkin, “Trajectory of deformed metal as basis for controlling the radial-shift and screw rolling,” Stal, 7, 63–66 (2004).
13.
Zurück zum Zitat F. Yabo, C. Jing, and C. Zhiqiang, “Cracks of Cu–Cr–Zr alloy bars under planetary rolling,” Rare Metal Materials and Eng., 44, No. 3, 567–570 (2015).CrossRef F. Yabo, C. Jing, and C. Zhiqiang, “Cracks of Cu–Cr–Zr alloy bars under planetary rolling,” Rare Metal Materials and Eng., 44, No. 3, 567–570 (2015).CrossRef
14.
Zurück zum Zitat S. Zhi, W. Meng Hua, L. Wei, and B. Ding, “Research on the tendency of inner crack during 3-Roll skew rolling process of round billets,” Advanced Materials Research, 145, 238–242 (2011).CrossRef S. Zhi, W. Meng Hua, L. Wei, and B. Ding, “Research on the tendency of inner crack during 3-Roll skew rolling process of round billets,” Advanced Materials Research, 145, 238–242 (2011).CrossRef
15.
Zurück zum Zitat B. A. Romantsev, S. P. Galkin, V. K. Mikhajlov, et al., “Bar micromill,” Stal, 2, 40–42 (1995). B. A. Romantsev, S. P. Galkin, V. K. Mikhajlov, et al., “Bar micromill,” Stal, 2, 40–42 (1995).
16.
Zurück zum Zitat B. V. Karpov, M. M. Skripalenko, S. P. Galkin, et al., “Studying the nonstationary stages of screw rolling of billets with profiled ends,” Metallurgist, 61, No. 3-4, 257–264 (2017).CrossRef B. V. Karpov, M. M. Skripalenko, S. P. Galkin, et al., “Studying the nonstationary stages of screw rolling of billets with profiled ends,” Metallurgist, 61, No. 3-4, 257–264 (2017).CrossRef
17.
Zurück zum Zitat G. V. Kozhevnikova, Theory and Practice of Cross-Wedge Rolling [in Russian], Belarusskaya Nauka, Minsk (2010). G. V. Kozhevnikova, Theory and Practice of Cross-Wedge Rolling [in Russian], Belarusskaya Nauka, Minsk (2010).
18.
Zurück zum Zitat S. P. Galkin, V. A. Fadeyev, and A. Yu. Gander, “Comparative analysis of geometry of mini-mills for radial-shear (screw) rolling,” Proiz. Prokata, 12, 19–25 (2015). S. P. Galkin, V. A. Fadeyev, and A. Yu. Gander, “Comparative analysis of geometry of mini-mills for radial-shear (screw) rolling,” Proiz. Prokata, 12, 19–25 (2015).
19.
Zurück zum Zitat A. V. Vlasov, “Calculation of metal damage during cold radial forging based on the results of finite-element simulation using DEFORM-3D software,” in: Proc. Int. Sci. Tech. Conf. “Engineering Systems – 2009,” Moscow (2009), pp. 204–217. A. V. Vlasov, “Calculation of metal damage during cold radial forging based on the results of finite-element simulation using DEFORM-3D software,” in: Proc. Int. Sci. Tech. Conf. “Engineering Systems – 2009,” Moscow (2009), pp. 204–217.
20.
Zurück zum Zitat V. L. Kolmogorov, Mechanics of Metal Treatment Under Pressure [in Russian], UGTU-UPI publishing, Yekaterinburg (2001). V. L. Kolmogorov, Mechanics of Metal Treatment Under Pressure [in Russian], UGTU-UPI publishing, Yekaterinburg (2001).
21.
Zurück zum Zitat V. A. Belevitin, Development and Improvement of Experimental Mechanics Techniques to Optimize Technological Processes of Metal Treatment Under Pressure, D. Sc. Dissertation, JSC “Ufaley metallurgical machine-building plant,” Verkhnii Ufaley (1997). V. A. Belevitin, Development and Improvement of Experimental Mechanics Techniques to Optimize Technological Processes of Metal Treatment Under Pressure, D. Sc. Dissertation, JSC “Ufaley metallurgical machine-building plant,” Verkhnii Ufaley (1997).
22.
Zurück zum Zitat A. Bogatov and D. Pavlov, “Study of metal strained state during workpiece reduction in a three-roll screw-rolling mill,” Metallurgist, 61, No. 3-4, 311–317 (2017).CrossRef A. Bogatov and D. Pavlov, “Study of metal strained state during workpiece reduction in a three-roll screw-rolling mill,” Metallurgist, 61, No. 3-4, 311–317 (2017).CrossRef
23.
Zurück zum Zitat A. V. Belevich, Modeling of Ductility and Deformation Resistance Parameters of Steels and Alloys: Technological Mechanics Workshop, Vladimir State University, VlGU Publishing, Vladimir (2005). A. V. Belevich, Modeling of Ductility and Deformation Resistance Parameters of Steels and Alloys: Technological Mechanics Workshop, Vladimir State University, VlGU Publishing, Vladimir (2005).
Metadaten
Titel
Prediction of Potential Fracturing During Radial-Shear Rolling of Continuously Cast Copper Billets by Means of Computer Simulation
verfasst von
M. M. Skripalenko
S. P. Galkin
Her Jae Sung
B. A. Romantsev
Tran Ba Huy
M. N. Skripalenko
L. M. Kaputkina
A. A. Sidorow
Publikationsdatum
29.01.2019
Verlag
Springer US
Erschienen in
Metallurgist / Ausgabe 9-10/2019
Print ISSN: 0026-0894
Elektronische ISSN: 1573-8892
DOI
https://doi.org/10.1007/s11015-019-00728-8

Weitere Artikel der Ausgabe 9-10/2019

Metallurgist 9-10/2019 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.