Skip to main content
main-content

Tipp

Weitere Artikel dieser Ausgabe durch Wischen aufrufen

07.06.2016 | Original Article | Sonderheft 1/2017

Neural Computing and Applications 1/2017

Prediction of properties of self-compacting concrete containing fly ash using artificial neural network

Zeitschrift:
Neural Computing and Applications > Sonderheft 1/2017
Autoren:
Omar Belalia Douma, Bakhta Boukhatem, Mohamed Ghrici, Arezki Tagnit-Hamou

Abstract

This paper investigates the feasibility of using artificial neural networks (ANNs) modeling to predict the properties of self-compacting concrete (SCC) containing fly ash as cement replacement. For the purpose of constructing this model, a database of experimental data was gathered from the literature and used for training and testing the model. The data used in the artificial neural network model are arranged in a format of six input parameters that cover the total binder content, fly ash replacement percentage, water–binder ratio, fine aggregates, coarse aggregates and superplasticizer. Four outputs parameters are predicted based on the ANN technique as the slump flow, the L-box ratio, the V-funnel time and the compressive strength at 28 days of SCC. To demonstrate the utility of the proposed model and improve its performance, a comparison of the ANN-based prediction model with other researcher’s experimental results was carried out, and a good agreement was found. A sensitivity analysis was also conducted using the trained and tested ANN model to investigate the effect of fly ash on SCC properties. This study shows that artificial neural network has strong potential as a feasible tool for predicting accurately the properties of SCC containing fly ash.

Bitte loggen Sie sich ein, um Zugang zu diesem Inhalt zu erhalten

Sie möchten Zugang zu diesem Inhalt erhalten? Dann informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft"

Online-Abonnement

Mit dem Wirtschafts-Abo erhalten Sie Zugriff auf über 1 Mio. Dokumente aus mehr als 45.000 Fachbüchern und 300 Fachzeitschriften aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb

Testen Sie jetzt 30 Tage kostenlos.

Springer Professional "Technik"

Online-Abonnement

Mit dem Technik-Abo erhalten Sie Zugriff auf über 1 Mio. Dokumente aus mehr als 40.000 Fachbüchern und 300 Fachzeitschriften aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Umwelt
  • Maschinenbau + Werkstoffe

Testen Sie jetzt 30 Tage kostenlos.

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit dem Kombi-Abo erhalten Sie vollen Zugriff auf über 1,8 Mio. Dokumente aus mehr als 61.000 Fachbüchern und rund 500 Fachzeitschriften aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Umwelt
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe

Testen Sie jetzt 30 Tage kostenlos.

Literatur
Über diesen Artikel

Weitere Artikel der Sonderheft 1/2017

Neural Computing and Applications 1/2017 Zur Ausgabe

Premium Partner

BranchenIndex Online

Die B2B-Firmensuche für Industrie und Wirtschaft: Kostenfrei in Firmenprofilen nach Lieferanten, Herstellern, Dienstleistern und Händlern recherchieren.

Whitepaper

- ANZEIGE -

Best Practices für die Mitarbeiter-Partizipation in der Produktentwicklung

Unternehmen haben das Innovationspotenzial der eigenen Mitarbeiter auch außerhalb der F&E-Abteilung erkannt. Viele Initiativen zur Partizipation scheitern in der Praxis jedoch häufig. Lesen Sie hier  - basierend auf einer qualitativ-explorativen Expertenstudie - mehr über die wesentlichen Problemfelder der mitarbeiterzentrierten Produktentwicklung und profitieren Sie von konkreten Handlungsempfehlungen aus der Praxis.
Jetzt gratis downloaden!

Bildnachweise