Skip to main content
Erschienen in: Sustainable Water Resources Management 4/2018

19.07.2017 | Original Article

Prediction of suspended sediment yield by artificial neural network and traditional mathematical model in Mahanadi river basin, India

verfasst von: Arvind Yadav, Snehamoy Chatterjee, Sk. Md. Equeenuddin

Erschienen in: Sustainable Water Resources Management | Ausgabe 4/2018

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Estimation of sediment yield is essential towards understanding the mass balance between the ocean and land. Direct measurement of suspended sediment is difficult as it needs sufficient time and money. The suspended sediment yield depends on a number of variables, and their inter-relationships are highly non-linear and complex in nature. In this paper, soft computing-based sediment yield estimation algorithms are proposed for the Mahanadi river basin. A multilayer perceptron (MLP) artificial neural network (ANN) with an error back-propagation algorithm using historical monthly hydro-climatic data (temperature, water discharge and rainfall) was employed to predict the suspended sediment yield at the Tikarapara gauging station, which is the farthest downstream station in the Mahanadi river. The results demonstrated that water discharge and rainfall are significant controlling parameters of suspended sediment in the Mahanadi River. The comparative results show that the feed-forward back-propagation with Levenberg–Marquardt (FFBP–LM) is the best model for suspended sediment yield estimation, and provides more reasonable prediction for extremely high and low values. The performance of the sediment rating curve (SRC) model was below expectations as it produced the least accurate results for the peak sediment values, as well as overall model performance. It is also noticed that the multiple linear regressions (MLR) model predicted negative sediment yield at low values; which is completely unrealistic as suspended sediment yield cannot be negative in nature. It was also observed that suspended yield prediction by ANN was superior compared to that using MLR and SRC models. The proposed model will be beneficial for sediment prediction where estimates of suspended sediment values are unavailable.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
Zurück zum Zitat Adeloye A, Munari AD (2006) Artificial neural network based generalized storage yield-reliability models using the Levenberg–Marquardt algorithm. J Hydrol 362:215–230CrossRef Adeloye A, Munari AD (2006) Artificial neural network based generalized storage yield-reliability models using the Levenberg–Marquardt algorithm. J Hydrol 362:215–230CrossRef
Zurück zum Zitat Ahmad S, Simonovic SP (2006) An intelligent decision support system for management of floods. Water Resour Manag 20(3):391–410CrossRef Ahmad S, Simonovic SP (2006) An intelligent decision support system for management of floods. Water Resour Manag 20(3):391–410CrossRef
Zurück zum Zitat Altun H, Bilgil A, Fidan BC (2007) Treatment of multidimensional data to enhance neural network estimators in regression problems. Expert Syst Appl 32(2):599–605CrossRef Altun H, Bilgil A, Fidan BC (2007) Treatment of multidimensional data to enhance neural network estimators in regression problems. Expert Syst Appl 32(2):599–605CrossRef
Zurück zum Zitat Bates BC, Kundzewicz ZW, Wu S, Palutikof JP (2008) Climate change and water; Technical Paper of the Intergovernmental Panel on Climate Change. IPCC Secretariat, Geneva Bates BC, Kundzewicz ZW, Wu S, Palutikof JP (2008) Climate change and water; Technical Paper of the Intergovernmental Panel on Climate Change. IPCC Secretariat, Geneva
Zurück zum Zitat Bhattacharya B, Lobbrecht AH, Solomatine DP (2003) Neural networks and reinforcement learning in control of water systems. J Water Res 129(6):458–465CrossRef Bhattacharya B, Lobbrecht AH, Solomatine DP (2003) Neural networks and reinforcement learning in control of water systems. J Water Res 129(6):458–465CrossRef
Zurück zum Zitat Boukhrissa ZA, Khanchoul K, Bissonnais YL, Tourki M (2013) Compare the Ann and sediment rating curve model for prediction of suspended sediment load in EI Kebir catchment, Algeria. J Earth Syst Sci 122(5):1303–1312CrossRef Boukhrissa ZA, Khanchoul K, Bissonnais YL, Tourki M (2013) Compare the Ann and sediment rating curve model for prediction of suspended sediment load in EI Kebir catchment, Algeria. J Earth Syst Sci 122(5):1303–1312CrossRef
Zurück zum Zitat Central Water Commission (CWC) (2012) Integrated hydrological data book. Hydrological data directorate, information systems organization, Water planning and projects wing, New Delhi, India Central Water Commission (CWC) (2012) Integrated hydrological data book. Hydrological data directorate, information systems organization, Water planning and projects wing, New Delhi, India
Zurück zum Zitat Chatterjee S, Bandopadhyay S (2012) Reliability estimation using a genetic algorithm-based artificial neural network: an application to a laud-haul-dump machine. Expert Syst Appl 39:10943–10951CrossRef Chatterjee S, Bandopadhyay S (2012) Reliability estimation using a genetic algorithm-based artificial neural network: an application to a laud-haul-dump machine. Expert Syst Appl 39:10943–10951CrossRef
Zurück zum Zitat Cigizoglu HK (2004) Estimation and forecasting of daily suspended sediment data by multi-layer perceptrons. Adv Water Resour 27:185–195CrossRef Cigizoglu HK (2004) Estimation and forecasting of daily suspended sediment data by multi-layer perceptrons. Adv Water Resour 27:185–195CrossRef
Zurück zum Zitat Cigizoglu HK, Kisi O (2006) Methods to improve the neural network performance in suspended sediment estimation. J Hydrol 317(3–4):221–238CrossRef Cigizoglu HK, Kisi O (2006) Methods to improve the neural network performance in suspended sediment estimation. J Hydrol 317(3–4):221–238CrossRef
Zurück zum Zitat Cobaner M, Unal B, Kisi O (2009) Suspended sediment concentration estimation by an adaptive neuro-fuzzy and neural network approaches using hydro-meteorological data. J Hydrol 367:52–61CrossRef Cobaner M, Unal B, Kisi O (2009) Suspended sediment concentration estimation by an adaptive neuro-fuzzy and neural network approaches using hydro-meteorological data. J Hydrol 367:52–61CrossRef
Zurück zum Zitat Cybenko G (1989) Approximation by superpositions of a sigmoidal function. Math Control Signal 2:303–314CrossRef Cybenko G (1989) Approximation by superpositions of a sigmoidal function. Math Control Signal 2:303–314CrossRef
Zurück zum Zitat Demuth HB, Beale M (1998) Neural network toolbox for use with MATLAB, Users Guide. The Mathworks Inc, Massachusetts Demuth HB, Beale M (1998) Neural network toolbox for use with MATLAB, Users Guide. The Mathworks Inc, Massachusetts
Zurück zum Zitat Duan W, Takara K, He B, Luo P, Nover D, Yamashiki Y (2013a) Spatial and temporal trends in estimates of nutrient and suspended sediment loads in the Ishikari River, Japan, 1985 to 2010. Sci Total Environ 461:499–508CrossRef Duan W, Takara K, He B, Luo P, Nover D, Yamashiki Y (2013a) Spatial and temporal trends in estimates of nutrient and suspended sediment loads in the Ishikari River, Japan, 1985 to 2010. Sci Total Environ 461:499–508CrossRef
Zurück zum Zitat Duan W, He B, Takara K, Luo P, Nover D, Sahu N, Yamashiki Y (2013b) Spatiotemporal evaluation of water quality incidents in Japan between 1996 and 2007. Chemosphere 93(6):946–953CrossRef Duan W, He B, Takara K, Luo P, Nover D, Sahu N, Yamashiki Y (2013b) Spatiotemporal evaluation of water quality incidents in Japan between 1996 and 2007. Chemosphere 93(6):946–953CrossRef
Zurück zum Zitat Duan WL, He B, Takara K, Luo PP, Nover D, Hu MC (2014) Modeling suspended sediment sources and transport in the Ishikari River basin, Japan, using SPARROW. Hydrol Earth Syst Sci 19(3):1293–1306CrossRef Duan WL, He B, Takara K, Luo PP, Nover D, Hu MC (2014) Modeling suspended sediment sources and transport in the Ishikari River basin, Japan, using SPARROW. Hydrol Earth Syst Sci 19(3):1293–1306CrossRef
Zurück zum Zitat Ghose DK, Swain DPC, Panda DSS (2012) Sediment load analysis using ANN and GA. Appl mech mater 110–116:2693–2698 Ghose DK, Swain DPC, Panda DSS (2012) Sediment load analysis using ANN and GA. Appl mech mater 110–116:2693–2698
Zurück zum Zitat Hagan MT, Menhaj MB (1994) Training feedforward networks with the Marquardt algorithm. IEEE Trans Neural Netw 5(6):989–993CrossRef Hagan MT, Menhaj MB (1994) Training feedforward networks with the Marquardt algorithm. IEEE Trans Neural Netw 5(6):989–993CrossRef
Zurück zum Zitat Haghizade A, Shui LT, Goudarzi E (2010) Estimation of yield sediment using artificial neural network at basin scale. Aust J Basic Appl Sci 4(7):1668–1675 Haghizade A, Shui LT, Goudarzi E (2010) Estimation of yield sediment using artificial neural network at basin scale. Aust J Basic Appl Sci 4(7):1668–1675
Zurück zum Zitat Harrison CGA (2000) What factors control mechanical erosion rates? Intl J Earth Sci 88(4):752–763CrossRef Harrison CGA (2000) What factors control mechanical erosion rates? Intl J Earth Sci 88(4):752–763CrossRef
Zurück zum Zitat Held IM, Soden BJ (2006) Robust responses of the hydrological cycle to global warming. J Clim 19:5686–5699CrossRef Held IM, Soden BJ (2006) Robust responses of the hydrological cycle to global warming. J Clim 19:5686–5699CrossRef
Zurück zum Zitat Hornik K, Stinchcombe M, White H (1989) Multilayer feed forward networks are universal approximators. Neural Netw 2:359–366CrossRef Hornik K, Stinchcombe M, White H (1989) Multilayer feed forward networks are universal approximators. Neural Netw 2:359–366CrossRef
Zurück zum Zitat Jain SK (2001) Development of integrated sediment rating curves using ANNs. J Hydraul Eng 127(1):30–37CrossRef Jain SK (2001) Development of integrated sediment rating curves using ANNs. J Hydraul Eng 127(1):30–37CrossRef
Zurück zum Zitat Jansson MB (1997) Comparison of sediment rating curves developed load and on concentration. Nordic Hydrol 28(3):189–200CrossRef Jansson MB (1997) Comparison of sediment rating curves developed load and on concentration. Nordic Hydrol 28(3):189–200CrossRef
Zurück zum Zitat Kar AK, Lohani AK, Goel NK, Roy GP (2010) Development of flood forecasting system using statistical and ANN techniques in the downstream catchment of Mahanadi Basin, India. J Water Resour Prot 2:880–887CrossRef Kar AK, Lohani AK, Goel NK, Roy GP (2010) Development of flood forecasting system using statistical and ANN techniques in the downstream catchment of Mahanadi Basin, India. J Water Resour Prot 2:880–887CrossRef
Zurück zum Zitat Karunanithi N, Grenney WJ, Whitley D, Bovee K (1994) Neural networks for river flow prediction. J Comput Civil Eng 8(2):201–220CrossRef Karunanithi N, Grenney WJ, Whitley D, Bovee K (1994) Neural networks for river flow prediction. J Comput Civil Eng 8(2):201–220CrossRef
Zurück zum Zitat Kisi O (2004) Multi-layer perceptrons with Levenberg–Marquardt optimization algorithm for suspended sediment concentration prediction and estimation. J Hydrolog Sci 49(6):1025–1040CrossRef Kisi O (2004) Multi-layer perceptrons with Levenberg–Marquardt optimization algorithm for suspended sediment concentration prediction and estimation. J Hydrolog Sci 49(6):1025–1040CrossRef
Zurück zum Zitat Kisi O (2005) Suspended sediment estimation using neuro-fuzzy and neural network approaches. J Hydrol Eng 50(4):683–696 Kisi O (2005) Suspended sediment estimation using neuro-fuzzy and neural network approaches. J Hydrol Eng 50(4):683–696
Zurück zum Zitat Lu XX (2005) Spatial variability and temporal changed of water discharge and sediment flux in the lower Jinsha tributary: impact of environmental changes. River Res Appl 21:229–243CrossRef Lu XX (2005) Spatial variability and temporal changed of water discharge and sediment flux in the lower Jinsha tributary: impact of environmental changes. River Res Appl 21:229–243CrossRef
Zurück zum Zitat Meher J (2014) Rainfall and runoff estimation using hydrological models and ANN techniques. Ph.D. thesis, National institute of technology, Rourkela, pp 1–218 Meher J (2014) Rainfall and runoff estimation using hydrological models and ANN techniques. Ph.D. thesis, National institute of technology, Rourkela, pp 1–218
Zurück zum Zitat Meher J, Jha R (2013) Time series analysis of monthly rainfall data for the Mahanadi river basin India. Sci Cold Arid Reg 5(1):73–84CrossRef Meher J, Jha R (2013) Time series analysis of monthly rainfall data for the Mahanadi river basin India. Sci Cold Arid Reg 5(1):73–84CrossRef
Zurück zum Zitat Menzel L, Burger G (2002) Climate change scenarios and runoff response in the Mulde catchment (Southern Elbe, Germany). J Hydrol 267(1–2):53–64CrossRef Menzel L, Burger G (2002) Climate change scenarios and runoff response in the Mulde catchment (Southern Elbe, Germany). J Hydrol 267(1–2):53–64CrossRef
Zurück zum Zitat Michael A, Schmidt J, Enke W, Deutschlander T, Malitz G (2005) Impact of expected increase in precipitation intensities on soil loss results of comparative model. CATENA 61(2–3):155–164CrossRef Michael A, Schmidt J, Enke W, Deutschlander T, Malitz G (2005) Impact of expected increase in precipitation intensities on soil loss results of comparative model. CATENA 61(2–3):155–164CrossRef
Zurück zum Zitat Mirbagheri SA, Tanji KK, Krone RB et al (1988) Sediment characterization and transport in Colusa basin drain. J Environ Eng 114(6):1257–1273CrossRef Mirbagheri SA, Tanji KK, Krone RB et al (1988) Sediment characterization and transport in Colusa basin drain. J Environ Eng 114(6):1257–1273CrossRef
Zurück zum Zitat Mosquera-Machado S, Ahmad S (2007) Flood hazard assessment of Atrato River in Colombia. Water Resour Manag 21:591–609CrossRef Mosquera-Machado S, Ahmad S (2007) Flood hazard assessment of Atrato River in Colombia. Water Resour Manag 21:591–609CrossRef
Zurück zum Zitat Nijssen B, O’ Donnell G, Hamlet A, Lettenmaier D et al (2001) Hydrologic sensitivity of global rivers to climate change. Clim Chang 50(1–2):143–175CrossRef Nijssen B, O’ Donnell G, Hamlet A, Lettenmaier D et al (2001) Hydrologic sensitivity of global rivers to climate change. Clim Chang 50(1–2):143–175CrossRef
Zurück zum Zitat Panigrahy BK, Raymahashay BC (2005) River water quality in weathered limestone: a case study in upper Mahanadi basin, India. J Earth Syst Sci 114:533–543. doi:10.1007/BF02702029 CrossRef Panigrahy BK, Raymahashay BC (2005) River water quality in weathered limestone: a case study in upper Mahanadi basin, India. J Earth Syst Sci 114:533–543. doi:10.​1007/​BF02702029 CrossRef
Zurück zum Zitat Pramanik N, Panda RK (2009) Application of neural network and adaptive neuro-fuzzy inference systems for river flow prediction. Hydrol Sci J 54(2):247–260CrossRef Pramanik N, Panda RK (2009) Application of neural network and adaptive neuro-fuzzy inference systems for river flow prediction. Hydrol Sci J 54(2):247–260CrossRef
Zurück zum Zitat Pruski FE, Nearing MA (2002) Climate-induced changes in erosion during the 21st century for eight US locations. Water Resour Res 38(12):1–11 (art.1299) CrossRef Pruski FE, Nearing MA (2002) Climate-induced changes in erosion during the 21st century for eight US locations. Water Resour Res 38(12):1–11 (art.1299) CrossRef
Zurück zum Zitat Rajaee T, Mirbagheri SA, Karmani MZ, Nourani V et al (2009) Daily suspended sediment concentration simulation using ANN and neuro-fuzzy models. Sci Tot Environ 407:4916–4927CrossRef Rajaee T, Mirbagheri SA, Karmani MZ, Nourani V et al (2009) Daily suspended sediment concentration simulation using ANN and neuro-fuzzy models. Sci Tot Environ 407:4916–4927CrossRef
Zurück zum Zitat Rojas R (1996) Neural network: a systematic introduction. Springer, Berlin, pp 151–184CrossRef Rojas R (1996) Neural network: a systematic introduction. Springer, Berlin, pp 151–184CrossRef
Zurück zum Zitat Singh G, Panda R (2011) Daily sediment yield modeling with artificial neural network using 10-fold cross validation method: a small agricultural watershed, Kapgari, India. Int J Earth Sci Eng 6(4):443–450 Singh G, Panda R (2011) Daily sediment yield modeling with artificial neural network using 10-fold cross validation method: a small agricultural watershed, Kapgari, India. Int J Earth Sci Eng 6(4):443–450
Zurück zum Zitat Syvitski JPM, Peckham SD, Hilberman R, Mulder T (2003) Predicting the terrestrial flux of sediment to the global ocean: a planetary perspective. Sediment Geol 162(1–2):5–24CrossRef Syvitski JPM, Peckham SD, Hilberman R, Mulder T (2003) Predicting the terrestrial flux of sediment to the global ocean: a planetary perspective. Sediment Geol 162(1–2):5–24CrossRef
Zurück zum Zitat Tang Z, De Almeida C, Fishwick PA et al (1991) Time series forecasting using neural networks vs Box–Jenkins methodology. Simulation 57:303–310CrossRef Tang Z, De Almeida C, Fishwick PA et al (1991) Time series forecasting using neural networks vs Box–Jenkins methodology. Simulation 57:303–310CrossRef
Zurück zum Zitat Tayfur G (2002) Artificial neural networks for sheet sediment transport. Hydrol Sci 47(6):879–892CrossRef Tayfur G (2002) Artificial neural networks for sheet sediment transport. Hydrol Sci 47(6):879–892CrossRef
Zurück zum Zitat Tayfur G, Guldal V (2006) Artificial neural networks for estimating daily total suspended sediment in natural streams. Nord Hydrol 37:69–79CrossRef Tayfur G, Guldal V (2006) Artificial neural networks for estimating daily total suspended sediment in natural streams. Nord Hydrol 37:69–79CrossRef
Zurück zum Zitat Walling DE (1978) Suspended sediment and solute response characteristics of the river Exe, Devon, England; In: Davidson-Arnott R, Nickling W (eds) Research in fluvial systems, Geoabstracts. Norwich, UK, pp 169–197 Walling DE (1978) Suspended sediment and solute response characteristics of the river Exe, Devon, England; In: Davidson-Arnott R, Nickling W (eds) Research in fluvial systems, Geoabstracts. Norwich, UK, pp 169–197
Zurück zum Zitat Wang YM, Traore S (2009) Time-lagged recurrent network for forecasting episodic event suspended sediment load in typhoon prone area. Int J Phys Sci 4(9):519–528 Wang YM, Traore S (2009) Time-lagged recurrent network for forecasting episodic event suspended sediment load in typhoon prone area. Int J Phys Sci 4(9):519–528
Zurück zum Zitat Xu JX (2003) Sediment flux to the sea as influenced by changing human activities and precipitation: example of the Yellow River, China. Environ Manag 31(3):328–341CrossRef Xu JX (2003) Sediment flux to the sea as influenced by changing human activities and precipitation: example of the Yellow River, China. Environ Manag 31(3):328–341CrossRef
Zurück zum Zitat Zhou G, Lu XX, Huang Y, Zhu YM et al (2004) Anthropogenic impact on the sediment flux in the dry-hot valleys of Southwest China-an example of the Longchaun River. J Mt Sci 1:239–249CrossRef Zhou G, Lu XX, Huang Y, Zhu YM et al (2004) Anthropogenic impact on the sediment flux in the dry-hot valleys of Southwest China-an example of the Longchaun River. J Mt Sci 1:239–249CrossRef
Zurück zum Zitat Zhu YM, Lu XX, Zhou Y et al (2007) Suspended sediment flux modeling with artificial neural network: an example of the Longchuanjiang River in the Upper Yangtze Catchment, China. Geomorphology 84(1–2):111–125CrossRef Zhu YM, Lu XX, Zhou Y et al (2007) Suspended sediment flux modeling with artificial neural network: an example of the Longchuanjiang River in the Upper Yangtze Catchment, China. Geomorphology 84(1–2):111–125CrossRef
Zurück zum Zitat Zhu YM, Lu XX, Zhou Y (2008) Sediment flux sensitivity to climate change: a case study in the Longchuanjiang catchment of the upper Yangtze River, China. Global Planet Chang 60:429–442CrossRef Zhu YM, Lu XX, Zhou Y (2008) Sediment flux sensitivity to climate change: a case study in the Longchuanjiang catchment of the upper Yangtze River, China. Global Planet Chang 60:429–442CrossRef
Metadaten
Titel
Prediction of suspended sediment yield by artificial neural network and traditional mathematical model in Mahanadi river basin, India
verfasst von
Arvind Yadav
Snehamoy Chatterjee
Sk. Md. Equeenuddin
Publikationsdatum
19.07.2017
Verlag
Springer International Publishing
Erschienen in
Sustainable Water Resources Management / Ausgabe 4/2018
Print ISSN: 2363-5037
Elektronische ISSN: 2363-5045
DOI
https://doi.org/10.1007/s40899-017-0160-1

Weitere Artikel der Ausgabe 4/2018

Sustainable Water Resources Management 4/2018 Zur Ausgabe