Skip to main content
main-content

Tipp

Weitere Artikel dieser Ausgabe durch Wischen aufrufen

12.09.2018 | Methodologies and Application | Ausgabe 19/2019

Soft Computing 19/2019

Prediction of the intermediate block displacement of the dam crest using artificial neural network and support vector regression models

Zeitschrift:
Soft Computing > Ausgabe 19/2019
Autoren:
Mahmoud Mohammad Rezapour Tabari, Hamed Reza Zarif Sanayei
Wichtige Hinweise
Communicated by V. Loia.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Abstract

Concrete arch dams are three-dimensional structures which are statically indeterminate due to integrity and arching performance. Hence, the spatial and temporal temperature gradients in concrete arch dams affect the volume of the structures and generated internal stresses threaten stability of the structures. Accordingly, estimation of long-term thermal behavior of these structures for proper serviceability with considering dam crest displacement is necessary, and this issue requires the application of appropriate prediction models. The goal of this study is to implement the support vector regression (SVR) and artificial neural network (ANN) models for prediction of the intermediate block displacement of the dam crest. For this purpose, displacement of dam crest is investigated with ABAQUS simulation model over a period of 8 years, and then, the results of the simulation are used in the soft models (SVR and ANN) as the input data. The analysis of the results of two models with five error indicators shows that the error reduction in the SVR model is about 32% less than the ANN model in the testing stage. Also, investigation of the normal cumulative probability distribution related to the outputs of two models indicates high degree of deviation on cumulative probability distribution of the ANN model. This is due to the fact that the ANN model ignores fundamental errors in the training process. Therefore, based on the SVR model one can predict the dam stability in an acceptable accuracy range, only by measuring two different parameters including reservoir water level and the air temperature.

Bitte loggen Sie sich ein, um Zugang zu diesem Inhalt zu erhalten

Sie möchten Zugang zu diesem Inhalt erhalten? Dann informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 69.000 Bücher
  • über 500 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Umwelt
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Testen Sie jetzt 30 Tage kostenlos.

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 58.000 Bücher
  • über 300 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Testen Sie jetzt 30 Tage kostenlos.

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 50.000 Bücher
  • über 380 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Umwelt
  • Maschinenbau + Werkstoffe




Testen Sie jetzt 30 Tage kostenlos.

Literatur
Über diesen Artikel

Weitere Artikel der Ausgabe 19/2019

Soft Computing 19/2019 Zur Ausgabe

Premium Partner

    Bildnachweise