Skip to main content
main-content

Tipp

Weitere Artikel dieser Ausgabe durch Wischen aufrufen

01.08.2015 | Original Paper | Ausgabe 3/2015

Bulletin of Engineering Geology and the Environment 3/2015

Prediction of the unconfined compressive strength of soft rocks: a PSO-based ANN approach

Zeitschrift:
Bulletin of Engineering Geology and the Environment > Ausgabe 3/2015
Autoren:
Edy Tonnizam Mohamad, Danial Jahed Armaghani, Ehsan Momeni, Seyed Vahid Alavi Nezhad Khalil Abad

Abstract

Many studies have shown that artificial neural networks (ANNs) are useful for predicting the unconfined compressive strength (UCS) of rocks. However, ANNs do have some deficiencies: they can get trapped in local minima and they have a slow learning rate. It is widely accepted that optimization algorithms such as particle swarm optimization (PSO) can improve ANN performance. This study investigated the application of a hybrid PSO-based ANN model to the prediction of rock UCS. To prepare a dataset for the predictive model, extensive laboratory tests (i.e., 160 tests in total) were conducted on 40 soft rock sample sets (mostly shale) presenting various weathering grades that were obtained from different excavation sites in Johor, Malaysia. The laboratory tests included the UCS test and other basic rock index tests (the Brazilian tensile strength test, point load index test, and ultrasonic test). When developing the predictive model of UCS, the results of the basic rock tests as well as the bulk densities of the samples were used as input parameters, while the UCS was set as the output of the predictive model. The value account for (VAF), root mean squared error (RMSE), and adjusted R 2 (coefficient of determination) were utilized to check the performances of the predictive models. The high performance indices of the proposed model highlight the superiority of the PSO-based ANN model for UCS prediction.

Bitte loggen Sie sich ein, um Zugang zu diesem Inhalt zu erhalten

Sie möchten Zugang zu diesem Inhalt erhalten? Dann informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 50.000 Bücher
  • über 380 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Umwelt
  • Maschinenbau + Werkstoffe




Testen Sie jetzt 30 Tage kostenlos.

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 69.000 Bücher
  • über 500 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Umwelt
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Testen Sie jetzt 30 Tage kostenlos.

Literatur
Über diesen Artikel

Weitere Artikel der Ausgabe 3/2015

Bulletin of Engineering Geology and the Environment 3/2015 Zur Ausgabe