Skip to main content
Erschienen in: Strength of Materials 5/2017

02.12.2017

Prediction of Thermal Instability-Initiated Performance Losses by Nanocomposite Structure Elements Under Cyclic Loading

verfasst von: M. Hashemi, Ya. A. Zhuk

Erschienen in: Strength of Materials | Ausgabe 5/2017

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The method of predicting thermal instability-initiated performance losses by nanocomposite structure elements is developed. It is based on the model of monoharmonic approximation of the material response to cyclic loading, amplitude ratios between main field variables, and concept of complex moduli. The methods of evaluating the moduli of accumulation and losses of nanocomposite components as well as the model allowing for the effect of the fiber-matrix contact surface were evolved. The modified homogenization procedure based on the Mori–Tanaka method was elaborated to obtain the complex moduli of a nanocomposite with random or unidirectional nanofiber orientation. Temperature- and amplitude-dependent complex moduli were used to study the effect of dissipative heating on the mechanical stability of a polymer nanocomposite bar under combined static and monoharmonic loadings. The effect of a load amplitude and volume content of nanofibers on the thermal instability of the bar was investigated.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat A. Katunin and M. Fidali, “Investigation of dynamic behaviour of laminated composite plates under cyclic loading,” Kompozyty, 11, No. 3, 208–213 (2011). A. Katunin and M. Fidali, “Investigation of dynamic behaviour of laminated composite plates under cyclic loading,” Kompozyty, 11, No. 3, 208–213 (2011).
2.
Zurück zum Zitat A. Goel, K. K. Chawla, U. K. Vaidya, and N. Chawla, “Characterization of fatigue behavior of long fibre reinforced thermoplastic (LFT) composites,” Mater. Charact., 60, No. 6, 537–544 (2009).CrossRef A. Goel, K. K. Chawla, U. K. Vaidya, and N. Chawla, “Characterization of fatigue behavior of long fibre reinforced thermoplastic (LFT) composites,” Mater. Charact., 60, No. 6, 537–544 (2009).CrossRef
3.
Zurück zum Zitat V. V. Moskvitin, Resistance of Viscoelastic Materials [in Russian], Nauka, Moscow (1972). V. V. Moskvitin, Resistance of Viscoelastic Materials [in Russian], Nauka, Moscow (1972).
4.
Zurück zum Zitat G. S. Pisarenko and N. S. Mozharovskii, “Criteria for failure of materials under cyclic thermal loading,” Strength Mater., 1, No. 1, 16–21 (1969).CrossRef G. S. Pisarenko and N. S. Mozharovskii, “Criteria for failure of materials under cyclic thermal loading,” Strength Mater., 1, No. 1, 16–21 (1969).CrossRef
5.
Zurück zum Zitat V. A. Sherstnev and Yu. I. Yagn, “Self-heating and thermal fatigue of caprolon during cyclic compression,” Strength Mater., 4, No. 7, 865–869 (1972).CrossRef V. A. Sherstnev and Yu. I. Yagn, “Self-heating and thermal fatigue of caprolon during cyclic compression,” Strength Mater., 4, No. 7, 865–869 (1972).CrossRef
6.
Zurück zum Zitat A. D. Kovalenko and V. G. Karnaukhov, “Equations and solutions of several problems of the theory of viscoelastic shells,” Dokl. AN UkrSSR, Ser. A, No. 7, 11–27 (1967). A. D. Kovalenko and V. G. Karnaukhov, “Equations and solutions of several problems of the theory of viscoelastic shells,” Dokl. AN UkrSSR, Ser. A, No. 7, 11–27 (1967).
7.
Zurück zum Zitat O. Plekhov, S. Uvarov, and O. Naimark, “Theoretical and experimental investigation of the dissipated and stored energy ratio in iron under quasi-static and cyclic loading,” Strength Mater., 40, No. 1, 90–93 (2008).CrossRef O. Plekhov, S. Uvarov, and O. Naimark, “Theoretical and experimental investigation of the dissipated and stored energy ratio in iron under quasi-static and cyclic loading,” Strength Mater., 40, No. 1, 90–93 (2008).CrossRef
8.
Zurück zum Zitat A. D. Kovalenko and V. G. Karnaukhov, “Heat generation in viscoelastic rotational shells under periodic effects,” Dokl. AN UkrSSR, Ser. A, No. 11, 5–11 (1971). A. D. Kovalenko and V. G. Karnaukhov, “Heat generation in viscoelastic rotational shells under periodic effects,” Dokl. AN UkrSSR, Ser. A, No. 11, 5–11 (1971).
9.
Zurück zum Zitat K. A. Schapery, “Effect of cyclic loading on the temperature in viscoelastic media with variable properties,” AIAA J., 2, No. 5, 827–835 (1964).CrossRef K. A. Schapery, “Effect of cyclic loading on the temperature in viscoelastic media with variable properties,” AIAA J., 2, No. 5, 827–835 (1964).CrossRef
10.
Zurück zum Zitat V. G. Karnaukhov and I. K. Senchenkov, “An approximate method for critical thermal analysis,” Prikl. Mekh., 12, No. 4, 18–25 (1976.). V. G. Karnaukhov and I. K. Senchenkov, “An approximate method for critical thermal analysis,” Prikl. Mekh., 12, No. 4, 18–25 (1976.).
11.
Zurück zum Zitat B. P. Gumenyuk and V. G. Karnaukhov, “Approximate calculation of critical thermal states in conjugate dynamic problems of thermoviscoelasticity,” Dokl. AN UkrSSR, Ser. A, No. 10, 905–908 (1977). B. P. Gumenyuk and V. G. Karnaukhov, “Approximate calculation of critical thermal states in conjugate dynamic problems of thermoviscoelasticity,” Dokl. AN UkrSSR, Ser. A, No. 10, 905–908 (1977).
12.
Zurück zum Zitat I. K. Senchenkov, V. G. Karnaukhov, and B. P. Gumenyuk, “Effect of vibration heating on the mechanical stability of a viscoelastic bar,” Prikl. Mekh., No. 1, 109–113 (1979). I. K. Senchenkov, V. G. Karnaukhov, and B. P. Gumenyuk, “Effect of vibration heating on the mechanical stability of a viscoelastic bar,” Prikl. Mekh., No. 1, 109–113 (1979).
13.
Zurück zum Zitat I. K. Senchenkov, Y. A. Zhuk, and V. G. Karnaukhov, “Modeling the thermomechanical behavior of physically nonlinear materials under monoharmonic loading,” Int. Appl. Mech., 40, No. 9, 943–969 (2004).CrossRef I. K. Senchenkov, Y. A. Zhuk, and V. G. Karnaukhov, “Modeling the thermomechanical behavior of physically nonlinear materials under monoharmonic loading,” Int. Appl. Mech., 40, No. 9, 943–969 (2004).CrossRef
14.
Zurück zum Zitat J. Constable, J. G. Williams, and D. J. Burns, “Fatigue at cyclic thermal softening of thermoplastics,” J. Mech. Eng. Sci., 12, No. 1, 20–29 (1970).CrossRef J. Constable, J. G. Williams, and D. J. Burns, “Fatigue at cyclic thermal softening of thermoplastics,” J. Mech. Eng. Sci., 12, No. 1, 20–29 (1970).CrossRef
15.
Zurück zum Zitat S. B. Ratner and V. I. Korobov, “Self-heating of polymers under cyclic deformation,” Mech. Polym., No. 3, 93–100 (1965). S. B. Ratner and V. I. Korobov, “Self-heating of polymers under cyclic deformation,” Mech. Polym., No. 3, 93–100 (1965).
16.
Zurück zum Zitat V. G. Karnaukhov, “Thermomechanics of coupled field in passive and piezoactive inelastic bodies under monoharmonic deformation,” J. Therm. Stresses, 28, Nos. 6–7, 783–815 (2005). V. G. Karnaukhov, “Thermomechanics of coupled field in passive and piezoactive inelastic bodies under monoharmonic deformation,” J. Therm. Stresses, 28, Nos. 6–7, 783–815 (2005).
17.
Zurück zum Zitat J. Qu, “The effect of slightly weakened interfaces on the overall elastic properties of composite materials,” Mech. Mater., 14, No. 4, 269–281 (1993).CrossRef J. Qu, “The effect of slightly weakened interfaces on the overall elastic properties of composite materials,” Mech. Mater., 14, No. 4, 269–281 (1993).CrossRef
18.
Zurück zum Zitat R. K. Goldberg, Computational Simulation of the High Strain Rate Tensile Response of Polymer Matrix Composites, NASA/TM-2002-211489 (2002). R. K. Goldberg, Computational Simulation of the High Strain Rate Tensile Response of Polymer Matrix Composites, NASA/TM-2002-211489 (2002).
19.
Zurück zum Zitat M. Hashemi and Y. A. Zhuk, “A procedure for complex moduli determination for polycarbonate plastic under harmonic loading,” Phys. Math. Sci., 4, 67–73 (2015). M. Hashemi and Y. A. Zhuk, “A procedure for complex moduli determination for polycarbonate plastic under harmonic loading,” Phys. Math. Sci., 4, 67–73 (2015).
20.
Zurück zum Zitat Y. A. Zhuk and M. Hashemi, “Frequency and amplitude dependence of complex moduli of composite material reinforced with nanofibers,” J. Phys.-Math. Model. Inform. Technol., 23, 92–107 (2016). Y. A. Zhuk and M. Hashemi, “Frequency and amplitude dependence of complex moduli of composite material reinforced with nanofibers,” J. Phys.-Math. Model. Inform. Technol., 23, 92–107 (2016).
21.
Zurück zum Zitat M. Hashemi and Y. A. Zhuk, “Influence of frequency and amplitude of harmonic loading on complex moduli for polymer materials,” Bull. KNU, 35, 53–57 (2016). M. Hashemi and Y. A. Zhuk, “Influence of frequency and amplitude of harmonic loading on complex moduli for polymer materials,” Bull. KNU, 35, 53–57 (2016).
22.
Zurück zum Zitat R. Hill, “Theory of mechanical properties of fiber-strengthened materials: I. Elastic behavior,” J. Mech. Phys. Sol., 12, No. 4, 199–212 (1964).CrossRef R. Hill, “Theory of mechanical properties of fiber-strengthened materials: I. Elastic behavior,” J. Mech. Phys. Sol., 12, No. 4, 199–212 (1964).CrossRef
23.
Zurück zum Zitat M. Esteva and P. D. Spanos, “Effective elastic properties of nanotube-reinforced composites with slightly weakened interfaces,” J. Mech. Mater. Struct., 4, No. 5, 887–900 (2009).CrossRef M. Esteva and P. D. Spanos, “Effective elastic properties of nanotube-reinforced composites with slightly weakened interfaces,” J. Mech. Mater. Struct., 4, No. 5, 887–900 (2009).CrossRef
24.
Zurück zum Zitat Y. A. Zhuk and I. K. Senchenkov, “Modelling the stationary vibrations and dissipative heating of thin-walled inelastic piezoactive layers,” Int. Appl. Mech., 40, No. 5, 546–556 (2004).CrossRef Y. A. Zhuk and I. K. Senchenkov, “Modelling the stationary vibrations and dissipative heating of thin-walled inelastic piezoactive layers,” Int. Appl. Mech., 40, No. 5, 546–556 (2004).CrossRef
25.
Zurück zum Zitat I. K. Senchenkov and Y. A. Zhuk, “Modeling the thermomechanical behavior of physically nonlinear materials under monoharmonic loading,” Int. Appl. Mech., 40, No. 9, 943–969 (2004).CrossRef I. K. Senchenkov and Y. A. Zhuk, “Modeling the thermomechanical behavior of physically nonlinear materials under monoharmonic loading,” Int. Appl. Mech., 40, No. 9, 943–969 (2004).CrossRef
26.
Zurück zum Zitat Y. Qiu and G. J. Weng, “On the application of Mori–Tanaka’s theory involving transversely isotropic spheroidal inclusions,” Int. J. Eng. Sci., 28, No. 11, 1121–1137 (1990).CrossRef Y. Qiu and G. J. Weng, “On the application of Mori–Tanaka’s theory involving transversely isotropic spheroidal inclusions,” Int. J. Eng. Sci., 28, No. 11, 1121–1137 (1990).CrossRef
27.
Zurück zum Zitat T. Mori and K. Tanaka, “Average stress in the matrix and average elastic energy of materials with misfitting inclusions,” Acta Metall., No. 21, 571–574 (1973). T. Mori and K. Tanaka, “Average stress in the matrix and average elastic energy of materials with misfitting inclusions,” Acta Metall., No. 21, 571–574 (1973).
28.
Zurück zum Zitat D. L. Shi, X. Q. Feng, Y. Huang, and K. C. Hwang, “The effect of nanotube waviness and agglomeration on the elastic property of carbon nanotube-reinforced composites,” J. Eng. Mater. Technol., 126, No. 3, 250– 257 (2004).CrossRef D. L. Shi, X. Q. Feng, Y. Huang, and K. C. Hwang, “The effect of nanotube waviness and agglomeration on the elastic property of carbon nanotube-reinforced composites,” J. Eng. Mater. Technol., 126, No. 3, 250– 257 (2004).CrossRef
29.
Zurück zum Zitat S. Namilae and N. Chandra, “Multiscale model to study the effect of interfaces in carbon nanotube-based composites,” J. Eng. Mater. Technol., 127, No. 2, 222–232 (2005).CrossRef S. Namilae and N. Chandra, “Multiscale model to study the effect of interfaces in carbon nanotube-based composites,” J. Eng. Mater. Technol., 127, No. 2, 222–232 (2005).CrossRef
30.
Zurück zum Zitat A. Gilat, R. Goldberg, and G. Roberts, “Incorporation of the effects of temperature and unloading into the strain rate-dependent analysis of polymer materials utilizing a state variable approach,” J. Earth Space, No. 4, 1–8 (2006). A. Gilat, R. Goldberg, and G. Roberts, “Incorporation of the effects of temperature and unloading into the strain rate-dependent analysis of polymer materials utilizing a state variable approach,” J. Earth Space, No. 4, 1–8 (2006).
Metadaten
Titel
Prediction of Thermal Instability-Initiated Performance Losses by Nanocomposite Structure Elements Under Cyclic Loading
verfasst von
M. Hashemi
Ya. A. Zhuk
Publikationsdatum
02.12.2017
Verlag
Springer US
Erschienen in
Strength of Materials / Ausgabe 5/2017
Print ISSN: 0039-2316
Elektronische ISSN: 1573-9325
DOI
https://doi.org/10.1007/s11223-017-9909-x

Weitere Artikel der Ausgabe 5/2017

Strength of Materials 5/2017 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.