Skip to main content

18.01.2025

Predictive analysis of electric vehicle prices across various car brands in Germany

verfasst von: Zhi Lin Lee, Nur Haizum Abd Rahman, Jim Chong

Erschienen in: Quality & Quantity

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Diverse factors influencing electric vehicle (EV) pricing pose significant challenges for manufacturers, consumers, and policymakers. Hence, manufacturers need help to develop competitive pricing strategies, promote market growth, and consumer confidence. Bridging this knowledge gap is essential for fostering a more transparent and effective EV market, necessitating comprehensive research to identify pricing influencers and provide actionable insights for stakeholders. This project utilizes a data science methodology to investigate factors influencing EV prices, predict new EV prices using machine learning techniques, linear regression, and support vector regression (SVR), and assess prediction accuracy through magnitude error. Data for analysis are sourced from Germany, Cheapest Electric Cars 2023 dataset. The results show significant correlations between EV prices and technological features; TopSpeed and Useable batteries show a positive correlation of 0.78 with prices in Germany, indicating that improvements in these features drive up EV costs. In prediction, linear regression is much more reliable than SVR in predicting EV prices. These findings are expected to give stakeholders actionable insights to comprehend market dynamics and enhance pricing strategies within the EV industry.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
Zurück zum Zitat Kumar, V.U., Krishna, A., Neelakanteswara, P., Basha, C.Z.: Advanced prediction of performance of a student in an university using machine learning techniques. 2020 International Conference on Electronics and Sustainable Communication Systems (ICESC), 121–126 (2020) https://doi.org/10.1109/icesc48915.2020.9155557 Kumar, V.U., Krishna, A., Neelakanteswara, P., Basha, C.Z.: Advanced prediction of performance of a student in an university using machine learning techniques. 2020 International Conference on Electronics and Sustainable Communication Systems (ICESC), 121–126 (2020) https://​doi.​org/​10.​1109/​icesc48915.​2020.​9155557
Zurück zum Zitat Thakkar, S., Donga, M., Panjwari, J., Kotak, D., Savalia, K.: Price prediction of electric vehicles. Int. J. Res. Publ. Rev. 4(4), 3744–3748 (2023) Thakkar, S., Donga, M., Panjwari, J., Kotak, D., Savalia, K.: Price prediction of electric vehicles. Int. J. Res. Publ. Rev. 4(4), 3744–3748 (2023)
Zurück zum Zitat Yan, J.: From tesla’s price strategy to reflects the overall industry trends of electric vehicles in china. Highlights Bus. Econ. Manage. 24, 641–646 (2024)CrossRef Yan, J.: From tesla’s price strategy to reflects the overall industry trends of electric vehicles in china. Highlights Bus. Econ. Manage. 24, 641–646 (2024)CrossRef
Metadaten
Titel
Predictive analysis of electric vehicle prices across various car brands in Germany
verfasst von
Zhi Lin Lee
Nur Haizum Abd Rahman
Jim Chong
Publikationsdatum
18.01.2025
Verlag
Springer Netherlands
Erschienen in
Quality & Quantity
Print ISSN: 0033-5177
Elektronische ISSN: 1573-7845
DOI
https://doi.org/10.1007/s11135-025-02055-4