Skip to main content

2025 | OriginalPaper | Buchkapitel

Predictive Data Analysis Platform, for Optimizing and Automating the Distribution of Car Insurance Products, Based on Telematic Data

verfasst von : Erik Barna, Emanuel Barcău, Raul Răvaru

Erschienen in: World Conference of AI-Powered Innovation and Inventive Design

Verlag: Springer Nature Switzerland

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The purpose of this article is to present an AI technology based innovative approach, involved in a platform for digitizing processes in the Car Insurance Business field, which allows the end user (the broker of insurance or the insurer) to base his decisions on robust information to help him make a robust business forecast. Predictive analytics for insurance entails the use of special technology to sift through and analyze historical telematics data and consumer trends in effort to project future behavior. Obviously combining the AI based IT technologies with mathematical and statistical models, the integrated digitalized platform presented in this article involve also both Data Modeling and Deep Learning. Practically, the software platform presented in this article represents the backbone of any insurance brokerage business, because without such an application it is impossible to manage business processes that have hundreds or even thousands of sales agents. From structural point of view, this platform has a layered structure, the first layer being the basic brokerage application, this being extended with innovative predictive computational modules as upper layers. The technical implications mainly refers to the innovative way of involving in the digitalized system a massive amount of telematics data. The expected business implications consists in offering, by an innovative digitalized solution, the possibility for the final client (insurance broker or insurer) to receive information that will help him make a forecast of business.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Jain, M., Verma, C.: Adapting k-means for Clustering in Big Data. Int. J. Comp. Appl. (0975 – 8887) 101(1), 119–24 (2014) Jain, M., Verma, C.: Adapting k-means for Clustering in Big Data. Int. J. Comp. Appl. (0975 – 8887) 101(1), 119–24 (2014)
2.
Zurück zum Zitat Hautamaki, V., et al.: A Comparison of Categorical Attribute Data Clustering Methods (2008) Hautamaki, V., et al.: A Comparison of Categorical Attribute Data Clustering Methods (2008)
3.
Zurück zum Zitat Tudor, I.: Association rule mining as a data mining technique. Bulletion of the Petroleum-Gas University din Ploieşti, Vol. LX No. 1/2008, Mathematics - Informatics – Phisics Series Tudor, I.: Association rule mining as a data mining technique. Bulletion of the Petroleum-Gas University din Ploieşti, Vol. LX No. 1/2008, Mathematics - Informatics – Phisics Series
4.
Zurück zum Zitat AitMlouk, A., Agouti, T., Gharnati, F.: Mining and prioritization of association rules for big data: multicriteria decision analysis approach. Journal of Big Data 4(42) (2017) AitMlouk, A., Agouti, T., Gharnati, F.: Mining and prioritization of association rules for big data: multicriteria decision analysis approach. Journal of Big Data 4(42) (2017)
Metadaten
Titel
Predictive Data Analysis Platform, for Optimizing and Automating the Distribution of Car Insurance Products, Based on Telematic Data
verfasst von
Erik Barna
Emanuel Barcău
Raul Răvaru
Copyright-Jahr
2025
DOI
https://doi.org/10.1007/978-3-031-75923-9_12