Skip to main content
main-content

Tipp

Weitere Artikel dieser Ausgabe durch Wischen aufrufen

21.11.2017 | Schwerpunkt | Ausgabe 3/2018

HMD Praxis der Wirtschaftsinformatik 3/2018

Predictive Maintenance in der industriellen Praxis

Entwicklung eines Prognoseansatzes unter eingeschränkter Informationslage

Zeitschrift:
HMD Praxis der Wirtschaftsinformatik > Ausgabe 3/2018
Autoren:
Raphael Bink, Patrick Zschech

Zusammenfassung

Prädiktive Instandhaltung stellt eine vorrausschauende Wartungsstrategie dar, die darauf abzielt, bevorstehende Fehler oder die restliche Lebensdauer einer technischen Anlage zu prognostizieren. Mit den Vorhersagen können Wartungsmaßnahmen proaktiv und zustandsabhängig eingeleitet werden, was einen optimierten Ressourceneinsatz ermöglicht. Grundlage dieses Ansatzes ist die Aufzeichnung umfangreicher Maschinendaten und deren Analyse mit Verfahren des maschinellen Lernens, um komplexe Zusammenhänge zwischen Zustandsdaten und entsprechenden Zielvariablen (z. B. der Restlaufzeit) abzubilden. Das Vorhandensein zahlreicher Monitoring-Daten führt jedoch nicht per se zu einer guten Informationslage für die Entwicklung von zielführenden Prognosemodellen. Im vorliegenden Beitrag wird beispielsweise eine Fallstudie vorgestellt, wo die Herausforderung darin bestand, den optimalen Zeitpunkt für einen verschleißbedingten Werkzeugwechsel einer Fräsmaschine vorherzusagen. Da in der Vergangenheit die Fräswerkzeuge häufig weit vor ihrer tatsächlichen Laufzeit getauscht wurden, würde ein Prognosemodell auf Basis dieser Werkzeugstandzeiten ein irrtümliches (in diesem Fall zu risikoscheues) Bild wiedergeben. Vor diesem Hintergrund beschäftigt sich der vorliegende Beitrag mit der Entwicklung eines Verfahrens zur Optimierung einer Wartungsstrategie unter eingeschränkten Informationen ausgehend von einer Fallstudie der industriellen Praxis. Zum Einsatz kommen Verfahren zur Feature Extraction in Zeitreihen, Techniken des Unsupervised Learnings zum Clustern von Zustandsdaten sowie rekurrente neuronale Netze für die Entwicklung eines Prognosemodells zur Bestimmung der Restlaufzeit. Mit dem entwickelten Ansatz ist es möglich, bislang subjektive Entscheidungen durch datengetriebene Entscheidungen zu ersetzen und damit die durchschnittliche Werkzeugstandzeit zu verlängern. Der Beitrag demonstriert weiterhin, wie trotz zunächst unzureichender Informationslage mit Machine Learning Entscheidungsunterstützungssysteme entwickelt werden können.

Bitte loggen Sie sich ein, um Zugang zu diesem Inhalt zu erhalten

Sie möchten Zugang zu diesem Inhalt erhalten? Dann informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 69.000 Bücher
  • über 500 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Umwelt
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Testen Sie jetzt 30 Tage kostenlos.

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 58.000 Bücher
  • über 300 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Testen Sie jetzt 30 Tage kostenlos.

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 50.000 Bücher
  • über 380 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Umwelt
  • Maschinenbau + Werkstoffe




Testen Sie jetzt 30 Tage kostenlos.

Weitere Produktempfehlungen anzeigen
Literatur
Über diesen Artikel

Weitere Artikel der Ausgabe 3/2018

HMD Praxis der Wirtschaftsinformatik 3/2018 Zur Ausgabe

Premium Partner

    Bildnachweise