Skip to main content
Erschienen in:

26.02.2024

Premature Ventricular Contractions Detection by Multi-Domain Feature Extraction and Auto-Encoder-based Feature Reduction

verfasst von: Maryam Ebrahimpoor, Mehdi Taghizadeh, Mohammad Hossein Fatehi, Omid Mahdiyar, Jasem Jamali

Erschienen in: Circuits, Systems, and Signal Processing | Ausgabe 5/2024

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Cardiovascular disorders are known to be among the most severe diseases and the leading causes of mortality all over the globe. Premature ventricular contractions (PVC) are one of the most prevalent types of cardiac arrhythmia. Recording and analyzing electrocardiogram (ECG) signals is one of the most popular methods (the least intrusive and least expensive) for investigating cardiac disorders. In this study, a new supervised approach for the automated detection of PVC has been developed through a combination of handcrafted feature extraction from ECG signals and deep-learning-based feature reduction. The proposed approach utilized multiple methodologies, namely statistical and chaos analysis in the time domain and time–frequency domain, and morphological assessment, to extract numerous features from ECG signals. Then, a variational autoencoder network is developed as a deep learning-based feature reduction technique to reduce the number of extracted features and obtain the most discriminating features. Finally, a support vector machine, k-nearest neighbor, and neural network classifiers with fivefold cross-validation are utilized to classify ECG signals. The MIT-BIH database is used to evaluate the proposed approach. The numerical results show that the proposed approach performs better than the current state-of-the-art studies.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

ATZelektronik

Die Fachzeitschrift ATZelektronik bietet für Entwickler und Entscheider in der Automobil- und Zulieferindustrie qualitativ hochwertige und fundierte Informationen aus dem gesamten Spektrum der Pkw- und Nutzfahrzeug-Elektronik. 

Lassen Sie sich jetzt unverbindlich 2 kostenlose Ausgabe zusenden.

ATZelectronics worldwide

ATZlectronics worldwide is up-to-speed on new trends and developments in automotive electronics on a scientific level with a high depth of information. 

Order your 30-days-trial for free and without any commitment.

Weitere Produktempfehlungen anzeigen
Literatur
1.
Zurück zum Zitat R Allami 2019 Premature ventricular contraction analysis for real-time patient monitoring Biomed. Signal Process. Control 47 358 365CrossRef R Allami 2019 Premature ventricular contraction analysis for real-time patient monitoring Biomed. Signal Process. Control 47 358 365CrossRef
2.
Zurück zum Zitat LD Avendano-Valencia JI Godino-Llorente M Blanco-Velasco G Castellanos-Dominguez 2010 Feature extraction from parametric time–frequency representations for heart murmur detection Ann. Biomed. Eng. 38 8 2716 2732CrossRef LD Avendano-Valencia JI Godino-Llorente M Blanco-Velasco G Castellanos-Dominguez 2010 Feature extraction from parametric time–frequency representations for heart murmur detection Ann. Biomed. Eng. 38 8 2716 2732CrossRef
3.
Zurück zum Zitat J Bernardi KA Aromolaran AS Aromolaran 2020 Neurological disorders and risk of arrhythmia Int. J. Mol. Sci. 22 1 188CrossRef J Bernardi KA Aromolaran AS Aromolaran 2020 Neurological disorders and risk of arrhythmia Int. J. Mol. Sci. 22 1 188CrossRef
4.
Zurück zum Zitat AK Bhoi KS Sherpa B Khandelwal 2018 Arrhythmia and ischemia classification and clustering using QRS-ST-T (QT) analysis of electrocardiogram Cluster Comput. 21 1 1033 1044CrossRef AK Bhoi KS Sherpa B Khandelwal 2018 Arrhythmia and ischemia classification and clustering using QRS-ST-T (QT) analysis of electrocardiogram Cluster Comput. 21 1 1033 1044CrossRef
5.
Zurück zum Zitat Z Chen H Xu J Luo T Zhu J Meng 2018 Low-power perceptron model based ECG processor for premature ventricular contraction detection Microprocess. Microsyst. 59 29 36CrossRef Z Chen H Xu J Luo T Zhu J Meng 2018 Low-power perceptron model based ECG processor for premature ventricular contraction detection Microprocess. Microsyst. 59 29 36CrossRef
6.
Zurück zum Zitat A Chen Y Zhang M Zhang W Liu S Chang H Wang J He Q Huang 2020 A real time QRS detection algorithm based on ET and PD controlled threshold strategy Sensors 20 14 4003CrossRef A Chen Y Zhang M Zhang W Liu S Chang H Wang J He Q Huang 2020 A real time QRS detection algorithm based on ET and PD controlled threshold strategy Sensors 20 14 4003CrossRef
7.
Zurück zum Zitat S Ghodake S Ghumbre S Deshmukh 2020 Optimized cardiovascular disease detection and features extraction algorithms from ECG data Int. J. Adv. Comput. Sci. Appl. 11 8 200 206 S Ghodake S Ghumbre S Deshmukh 2020 Optimized cardiovascular disease detection and features extraction algorithms from ECG data Int. J. Adv. Comput. Sci. Appl. 11 8 200 206
8.
Zurück zum Zitat V Gupta M Mittal V Mittal NK Saxena 2021 A critical review of feature extraction techniques for ECG signal analysis J. Inst. Eng. (India) Ser. B 102 5 1049 1060CrossRef V Gupta M Mittal V Mittal NK Saxena 2021 A critical review of feature extraction techniques for ECG signal analysis J. Inst. Eng. (India) Ser. B 102 5 1049 1060CrossRef
9.
Zurück zum Zitat T Ince S Kiranyaz M Gabbouj 2009 A generic and robust system for automated patient-specific classification of ECG signals IEEE Trans. Biomed. Eng. 56 5 1415 1426CrossRef T Ince S Kiranyaz M Gabbouj 2009 A generic and robust system for automated patient-specific classification of ECG signals IEEE Trans. Biomed. Eng. 56 5 1415 1426CrossRef
10.
Zurück zum Zitat R Jagannathan SA Patel MK Ali KMV Narayan 2019 Global updates on cardiovascular disease mortality trends and attribution of traditional risk factors Curr. Diab.Rep. 19 44CrossRef R Jagannathan SA Patel MK Ali KMV Narayan 2019 Global updates on cardiovascular disease mortality trends and attribution of traditional risk factors Curr. Diab.Rep. 19 44CrossRef
11.
Zurück zum Zitat G Jothi J Akilandeswari S David Samuel Azariya A Naveenkumar 2022 Unsupervised feature selection approaches for medical dataset using soft computing techniques Evolut. Comput. Intell 267 105 114CrossRef G Jothi J Akilandeswari S David Samuel Azariya A Naveenkumar 2022 Unsupervised feature selection approaches for medical dataset using soft computing techniques Evolut. Comput. Intell 267 105 114CrossRef
12.
Zurück zum Zitat A Kumar M Singh 2018 Statistical analysis of ST segments in ECG signals for detection of ischaemic episodes Transact. Inst. Meas. Control 40 3 819 830CrossRef A Kumar M Singh 2018 Statistical analysis of ST segments in ECG signals for detection of ischaemic episodes Transact. Inst. Meas. Control 40 3 819 830CrossRef
13.
Zurück zum Zitat H Li P Boulanger 2020 A survey of heart anomaly detection using ambulatory electrocardiogram (ECG) Sensors 20 5 1461CrossRef H Li P Boulanger 2020 A survey of heart anomaly detection using ambulatory electrocardiogram (ECG) Sensors 20 5 1461CrossRef
14.
Zurück zum Zitat CC Lin HY Chang YH Huang CY Yeh 2019 A novel wavelet-based algorithm for detection of QRS complex Appl. Sci. 9 10 2142CrossRef CC Lin HY Chang YH Huang CY Yeh 2019 A novel wavelet-based algorithm for detection of QRS complex Appl. Sci. 9 10 2142CrossRef
15.
Zurück zum Zitat CH Lin 2008 Frequency-domain features for ecg beat discrimination using grey relational analysis-based classifer Comput. Math. Appl. 55 4 680 690MathSciNetCrossRef CH Lin 2008 Frequency-domain features for ecg beat discrimination using grey relational analysis-based classifer Comput. Math. Appl. 55 4 680 690MathSciNetCrossRef
16.
Zurück zum Zitat AI Malakhov SI Schookin VI Ivancov AN Tikhomirov 2013 A combined algorithm for identification and differentiation of atrial flutter and atrial fibrillation based on ECG analysis Biomed. Eng. 47 14 17CrossRef AI Malakhov SI Schookin VI Ivancov AN Tikhomirov 2013 A combined algorithm for identification and differentiation of atrial flutter and atrial fibrillation based on ECG analysis Biomed. Eng. 47 14 17CrossRef
17.
Zurück zum Zitat BM Mathunjwa YT Lin CH Lin MF Abbod J Shingshieh 2021 ECG arrhythmia classification by using a recurrence plot and convolutional neural network Biomed. Signal Process. Control 64 102262CrossRef BM Mathunjwa YT Lin CH Lin MF Abbod J Shingshieh 2021 ECG arrhythmia classification by using a recurrence plot and convolutional neural network Biomed. Signal Process. Control 64 102262CrossRef
18.
Zurück zum Zitat MH Mazidi M Eshghi MR Raoufy 2020 Detection of premature ventricular contraction (PVC) using linear and nonlinear techniques: an experimental study Clust. Comput. 23 2 759 774CrossRef MH Mazidi M Eshghi MR Raoufy 2020 Detection of premature ventricular contraction (PVC) using linear and nonlinear techniques: an experimental study Clust. Comput. 23 2 759 774CrossRef
19.
Zurück zum Zitat GB Moody RG Mark 2001 The impact of the MIT-BIH arrhythmia database IEEE Eng. Med. Biol. Mag. 20 3 45 50CrossRef GB Moody RG Mark 2001 The impact of the MIT-BIH arrhythmia database IEEE Eng. Med. Biol. Mag. 20 3 45 50CrossRef
20.
Zurück zum Zitat HC Nejad O Khayat J Razjouyan 2014 Chaotic feature extraction and neuro-fuzzy classifier for ECG signal characterization Biomed. Eng. Appl., Basis Commun. 26 03 1450038CrossRef HC Nejad O Khayat J Razjouyan 2014 Chaotic feature extraction and neuro-fuzzy classifier for ECG signal characterization Biomed. Eng. Appl., Basis Commun. 26 03 1450038CrossRef
21.
Zurück zum Zitat MR Rajeshwari KS Kavitha 2022 Arrhythmia ventricular fibrillation classification on ECG signal using ensemble feature selection and deep neural network Clust. Comput. 25 5 1 18CrossRef MR Rajeshwari KS Kavitha 2022 Arrhythmia ventricular fibrillation classification on ECG signal using ensemble feature selection and deep neural network Clust. Comput. 25 5 1 18CrossRef
22.
Zurück zum Zitat DJ Rezende S Mohamed D Wierstra 2014 Stochastic backpropagation and approximate inference in deep generative models Int. Conf. Mach. Learn. 32 1278 1276 DJ Rezende S Mohamed D Wierstra 2014 Stochastic backpropagation and approximate inference in deep generative models Int. Conf. Mach. Learn. 32 1278 1276
23.
Zurück zum Zitat S Sahoo M Dash S Behera S Sabut 2020 Machine learning approach to detect cardiac arrhythmias in ECG signals: a survey Irbm 41 4 185 194CrossRef S Sahoo M Dash S Behera S Sabut 2020 Machine learning approach to detect cardiac arrhythmias in ECG signals: a survey Irbm 41 4 185 194CrossRef
24.
Zurück zum Zitat NT Sarshar M Mirzaei 2022 Premature ventricular contraction recognition based on a deep learning approach J. Healthc. Eng. 2022 1450723CrossRef NT Sarshar M Mirzaei 2022 Premature ventricular contraction recognition based on a deep learning approach J. Healthc. Eng. 2022 1450723CrossRef
25.
Zurück zum Zitat SH Serhal N Abdallah JM Marion P Chauvet 2022 Overview on prediction, detection, and classification of atrial fibrillation using wavelets and AI on ECG Comput. Biol. Med. 142 105168CrossRef SH Serhal N Abdallah JM Marion P Chauvet 2022 Overview on prediction, detection, and classification of atrial fibrillation using wavelets and AI on ECG Comput. Biol. Med. 142 105168CrossRef
26.
Zurück zum Zitat M Sraitih Y Jabrane A Hajjam El Hassani 2021 An automated system for ECG arrhythmia detection using machine learning techniques J. Clin. Med. 10 22 5450CrossRef M Sraitih Y Jabrane A Hajjam El Hassani 2021 An automated system for ECG arrhythmia detection using machine learning techniques J. Clin. Med. 10 22 5450CrossRef
27.
Zurück zum Zitat J Wang 2021 Automated detection of premature ventricular contraction based on the improved gated recurrent unit network Comput. Methods Progr. Biomed. 208 106284CrossRef J Wang 2021 Automated detection of premature ventricular contraction based on the improved gated recurrent unit network Comput. Methods Progr. Biomed. 208 106284CrossRef
28.
Zurück zum Zitat L Wang M Han X Li N Zhang H Cheng 2021 Review of classification methods on unbalanced data sets IEEE Access 9 64606 64628CrossRef L Wang M Han X Li N Zhang H Cheng 2021 Review of classification methods on unbalanced data sets IEEE Access 9 64606 64628CrossRef
29.
Zurück zum Zitat C Xu C Sun G Jiang X Chen Q He P Xie 2020 Two-level multi-domain feature extraction on sparse representation for motor imagery classification Biomed. Signal Process. Control 62 102160CrossRef C Xu C Sun G Jiang X Chen Q He P Xie 2020 Two-level multi-domain feature extraction on sparse representation for motor imagery classification Biomed. Signal Process. Control 62 102160CrossRef
30.
Zurück zum Zitat SN Yu MY Lee 2015 Wavelet-based multiscale sample entropy and chaotic features for congestive heart failure recognition using heart rate variability J. Med. Biol. Eng. 35 3 338 347CrossRef SN Yu MY Lee 2015 Wavelet-based multiscale sample entropy and chaotic features for congestive heart failure recognition using heart rate variability J. Med. Biol. Eng. 35 3 338 347CrossRef
31.
Zurück zum Zitat J Yu X Wang X Chen J Guo 2021 Automatic premature ventricular contraction detection using deep metric learning and KNN Biosensors 11 3 69CrossRef J Yu X Wang X Chen J Guo 2021 Automatic premature ventricular contraction detection using deep metric learning and KNN Biosensors 11 3 69CrossRef
32.
Zurück zum Zitat X Zhang M Shafiq G Zheng J Wan Z Sun 2021 Premature ventricular contractions’ detection based on active learning Sci. Program. 2021 1 14 X Zhang M Shafiq G Zheng J Wan Z Sun 2021 Premature ventricular contractions’ detection based on active learning Sci. Program. 2021 1 14
33.
Zurück zum Zitat F Zhou L Jin J Dong 2017 Premature ventricular contraction detection combining deep neural networks and rules inference Artif. Intell. Med. 79 42 51CrossRef F Zhou L Jin J Dong 2017 Premature ventricular contraction detection combining deep neural networks and rules inference Artif. Intell. Med. 79 42 51CrossRef
Metadaten
Titel
Premature Ventricular Contractions Detection by Multi-Domain Feature Extraction and Auto-Encoder-based Feature Reduction
verfasst von
Maryam Ebrahimpoor
Mehdi Taghizadeh
Mohammad Hossein Fatehi
Omid Mahdiyar
Jasem Jamali
Publikationsdatum
26.02.2024
Verlag
Springer US
Erschienen in
Circuits, Systems, and Signal Processing / Ausgabe 5/2024
Print ISSN: 0278-081X
Elektronische ISSN: 1531-5878
DOI
https://doi.org/10.1007/s00034-024-02613-5