Skip to main content
Erschienen in: Metallurgical and Materials Transactions B 3/2018

26.02.2018

Premelting, Melting, and Degradation Properties of Molten Alkali Nitrates: LiNO3, NaNO3, KNO3, and Binary NaNO3-KNO3

verfasst von: Mehedi Bin Mohammad, Geoffrey Alan Brooks, Muhammad Akbar Rhamdhani

Erschienen in: Metallurgical and Materials Transactions B | Ausgabe 3/2018

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

A simultaneous thermal analyzer (STA) was used to observe the transition and degradation events of LiNO3, NaNO3, KNO3, and binary NaNO3-KNO3 salts for potential use as phase change materials (PCMs) and heat transfer fluid (HTF). Samples were heated from 50 °C to 800 °C at 10 °C/min scanning rate in three atmospheres (argon, air, and oxygen) using an STA to observe decomposition behavior. Thermal stability increased for all salts at high partial pressure of O2 (\( P_{{{\text{O}}_{2} }} \)= 1.0) compared to inert argon (\( P_{{{\text{O}}_{2} }} \)= 0). O2, N2, NO, N2O, and NO2 were main evolved gases during nitrate decomposition. NO and O2 started to evolve at approximately the same temperature after melting, indicating that primary and secondary decomposition reactions were concurrent and overlapping. The solid-solid transition, liquidus and solidus temperatures, heat of transition, heat of melting, and heat of solidification were obtained at various heating-cooling rates (1, 2, 4, 5, 6, 8, 10, and 15 °C/min) using an STA. At all heating-cooling rates, a small gap exists between liquidus and solidus temperatures for all samples due to the salts exhibiting supercooling phenomena. This study showed that the degradation point depends on the blanket atmosphere top of the molten salts and that heating rates have a minor effect on transition events (peaks height, peaks width, and transition enthalpies).

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Fußnoten
1
SIGMA ALDRICH is a trademark of Merck KGaA
 
Literatur
1.
Zurück zum Zitat C.M. Kramer, Z.A. Munir, and J.V. Volponi: Thermochimica Acta, 1982, vol. 55, pp. 11–17.CrossRef C.M. Kramer, Z.A. Munir, and J.V. Volponi: Thermochimica Acta, 1982, vol. 55, pp. 11–17.CrossRef
2.
Zurück zum Zitat M.J. Maeso and J. Largo: Thermochimica Acta, 1993, vol. 223, pp. 145–56.CrossRef M.J. Maeso and J. Largo: Thermochimica Acta, 1993, vol. 223, pp. 145–56.CrossRef
3.
Zurück zum Zitat G.Y. Lai: High-Temperature Corrosion and Materials Applications, ASM International, Materials Park, OH, 2007. G.Y. Lai: High-Temperature Corrosion and Materials Applications, ASM International, Materials Park, OH, 2007.
4.
Zurück zum Zitat Karl-Otto Honikel: Met. Sci., 2008, vol. 78, pp. 68–76. Karl-Otto Honikel: Met. Sci., 2008, vol. 78, pp. 68–76.
5.
Zurück zum Zitat A.J. Gutiérrez, C. Rubio, J.M. Caballero, and A. Hardisson: in Encyclopedia of Toxicology (Third Edition), Philip Wexler, ed., Academic Press, Oxford, 2014, pp. 532–35. A.J. Gutiérrez, C. Rubio, J.M. Caballero, and A. Hardisson: in Encyclopedia of Toxicology (Third Edition), Philip Wexler, ed., Academic Press, Oxford, 2014, pp. 532–35.
6.
7.
Zurück zum Zitat R.W. Carling and R.W. Mar: Report No. SAND-81-80201981. R.W. Carling and R.W. Mar: Report No. SAND-81-80201981.
8.
Zurück zum Zitat C.M. Kramer, Z.A. Munir, and J.V. Volponi: Solar Energy, 1982, vol. 29, pp. 437–39.CrossRef C.M. Kramer, Z.A. Munir, and J.V. Volponi: Solar Energy, 1982, vol. 29, pp. 437–39.CrossRef
9.
Zurück zum Zitat C.M. Kramer, Z.A. Munir, and K.H. Stern: High Temp. Sci., 1983, vol. 16, pp. 257–67. C.M. Kramer, Z.A. Munir, and K.H. Stern: High Temp. Sci., 1983, vol. 16, pp. 257–67.
10.
Zurück zum Zitat A.J. Bard and J.A. Plambeck: Encyclopedia of Electrochemistry of the Elements: Fused Salt Systems, Marcel Dekker, Inc., New York, NY, 1976. A.J. Bard and J.A. Plambeck: Encyclopedia of Electrochemistry of the Elements: Fused Salt Systems, Marcel Dekker, Inc., New York, NY, 1976.
11.
Zurück zum Zitat A.L. Mehring, W.H. Ross, and A.R. Merz: Industr. Eng. Chem., 1929, vol. 21, pp. 379–82.CrossRef A.L. Mehring, W.H. Ross, and A.R. Merz: Industr. Eng. Chem., 1929, vol. 21, pp. 379–82.CrossRef
12.
Zurück zum Zitat C.W. Volley: United States Patent Office, Google Patents, New York, 1881. C.W. Volley: United States Patent Office, Google Patents, New York, 1881.
13.
Zurück zum Zitat Soteris A. Kalogirou: Progr. Energy Combust. Sci., 2004, vol. 30, pp. 231–95.CrossRef Soteris A. Kalogirou: Progr. Energy Combust. Sci., 2004, vol. 30, pp. 231–95.CrossRef
15.
Zurück zum Zitat S.A. Kalogirou: Solar Energy Engineering: Processes and Systems, Academic Press, Burlington, 2013. S.A. Kalogirou: Solar Energy Engineering: Processes and Systems, Academic Press, Burlington, 2013.
16.
Zurück zum Zitat Omid Mahian, Ali Kianifar, Soteris A. Kalogirou, Ioan Pop, and Somchai Wongwises: Int. J. Heat Mass Transfer, 2013, vol. 57, pp. 582–94.CrossRef Omid Mahian, Ali Kianifar, Soteris A. Kalogirou, Ioan Pop, and Somchai Wongwises: Int. J. Heat Mass Transfer, 2013, vol. 57, pp. 582–94.CrossRef
17.
Zurück zum Zitat S. Kalagirou: Solar thermal collectors and applications, Elsevier Inc, New York, 2009. S. Kalagirou: Solar thermal collectors and applications, Elsevier Inc, New York, 2009.
18.
Zurück zum Zitat Napoleon Enteria and Aliakbar Akbarzadeh: Solar Energy Sciences and Engineering Applications, CRC Press, Boca Raton, FL, 2013.CrossRef Napoleon Enteria and Aliakbar Akbarzadeh: Solar Energy Sciences and Engineering Applications, CRC Press, Boca Raton, FL, 2013.CrossRef
19.
Zurück zum Zitat Bauer T, Pfleger N, Breidenbach N, Eck M, Laing D, Kaesche S. Material aspects of solar salt for sensible heat storage. Appl Energy. 2013, 111:1114–11149.CrossRef Bauer T, Pfleger N, Breidenbach N, Eck M, Laing D, Kaesche S. Material aspects of solar salt for sensible heat storage. Appl Energy. 2013, 111:1114–11149.CrossRef
20.
Zurück zum Zitat R. Serrano-López, J. Fradera, and S. Cuesta-López: Chem. Eng. Processing: Process Intensific., 2013, vol. 73, pp. 87–102.CrossRef R. Serrano-López, J. Fradera, and S. Cuesta-López: Chem. Eng. Processing: Process Intensific., 2013, vol. 73, pp. 87–102.CrossRef
21.
Zurück zum Zitat D.F. Williams: Report No. ORNL/TM-2006/69, Oak Ridge National Laboratory, Oak Ridge, TN, 2006. D.F. Williams: Report No. ORNL/TM-2006/69, Oak Ridge National Laboratory, Oak Ridge, TN, 2006.
22.
Zurück zum Zitat Bauer T, Pfleger N, Laing D, Steinmann WD, Eck M, Kaesche S: in F Lantelme, H Groult (eds ) Molten Salts Chemistry, Elsevier, Oxford, 2013, pp. 415–38.CrossRef Bauer T, Pfleger N, Laing D, Steinmann WD, Eck M, Kaesche S: in F Lantelme, H Groult (eds ) Molten Salts Chemistry, Elsevier, Oxford, 2013, pp. 415–38.CrossRef
23.
Zurück zum Zitat Kurt H. Stern: High Temperature Properties and Thermal Decomposition of Inorganic Salts with Oxyanions, CRC Press, Boca Raton, FL, 2001. Kurt H. Stern: High Temperature Properties and Thermal Decomposition of Inorganic Salts with Oxyanions, CRC Press, Boca Raton, FL, 2001.
24.
Zurück zum Zitat Donghyun Shin and Debjyoti Banerjee: J. Heat Transfer, 2011, vol. 133, p. 024501.CrossRef Donghyun Shin and Debjyoti Banerjee: J. Heat Transfer, 2011, vol. 133, p. 024501.CrossRef
25.
Zurück zum Zitat Dongsheng Wen, Guiping Lin, Saeid Vafaei, and Kai Zhang: Particuology, 2009, vol. 7, pp. 141–50.CrossRef Dongsheng Wen, Guiping Lin, Saeid Vafaei, and Kai Zhang: Particuology, 2009, vol. 7, pp. 141–50.CrossRef
26.
Zurück zum Zitat A. Dowtherm, Product Technical Data, 1997. A. Dowtherm, Product Technical Data, 1997.
27.
Zurück zum Zitat J.W. Raade and D. Padowitz: J. Solar Energy Eng. Trans. ASME, 2011, vol. 133, p. 12.CrossRef J.W. Raade and D. Padowitz: J. Solar Energy Eng. Trans. ASME, 2011, vol. 133, p. 12.CrossRef
28.
Zurück zum Zitat HITEC®, Heat Transfer Salt, Coastal Chemical Co., L.L.C., Houston, TX, 2014. HITEC®, Heat Transfer Salt, Coastal Chemical Co., L.L.C., Houston, TX, 2014.
29.
Zurück zum Zitat Osami Abe, Taizo Utsunomiya, and Yoshio Hoshino: Thermochimica Acta, 1984, vol. 78, pp. 251–60.CrossRef Osami Abe, Taizo Utsunomiya, and Yoshio Hoshino: Thermochimica Acta, 1984, vol. 78, pp. 251–60.CrossRef
30.
Zurück zum Zitat T. Bauer, D. Laing, and R. Tamme: Molten Salts Chemistry and Technology, MS9, Trondheim, Norway, June 2011, pp. 5–9. T. Bauer, D. Laing, and R. Tamme: Molten Salts Chemistry and Technology, MS9, Trondheim, Norway, June 2011, pp. 5–9.
31.
Zurück zum Zitat R.W. Bradshaw and D.E. Meeker: Solar Energy Mater., 1990, vol. 21, pp. 51–60.CrossRef R.W. Bradshaw and D.E. Meeker: Solar Energy Mater., 1990, vol. 21, pp. 51–60.CrossRef
32.
Zurück zum Zitat Xuejun Zhang, Jun Tian, Kangcheng Xu, and Yici Gao: J. Phase Equilibria, 2003, vol. 24, pp. 441–46.CrossRef Xuejun Zhang, Jun Tian, Kangcheng Xu, and Yici Gao: J. Phase Equilibria, 2003, vol. 24, pp. 441–46.CrossRef
33.
Zurück zum Zitat O. Greis, K.M. Bahamdan, and B.M. Uwais: Thermochimica Acta, 1985, vol. 86, pp. 343–50.CrossRef O. Greis, K.M. Bahamdan, and B.M. Uwais: Thermochimica Acta, 1985, vol. 86, pp. 343–50.CrossRef
34.
Zurück zum Zitat Rebecca I. Dunn, Patrick J. Hearps, and Matthew N. Wright: Proc. IEEE, 2012, vol. 100, pp. 504–15.CrossRef Rebecca I. Dunn, Patrick J. Hearps, and Matthew N. Wright: Proc. IEEE, 2012, vol. 100, pp. 504–15.CrossRef
35.
Zurück zum Zitat H.J. Emeléus and A.G. Sharpe: Advances in Inorganic Chemistry and Radiochemistry, Academic Press, New York, NY, 1964. H.J. Emeléus and A.G. Sharpe: Advances in Inorganic Chemistry and Radiochemistry, Academic Press, New York, NY, 1964.
36.
Zurück zum Zitat Saul Gordon and Clement Campbell: Analyt. Chem., 1955, vol. 27, pp. 1102–09.CrossRef Saul Gordon and Clement Campbell: Analyt. Chem., 1955, vol. 27, pp. 1102–09.CrossRef
37.
Zurück zum Zitat E.A. Bordyushkova, P.I. Prostsenko, and L.N. Venerovskaya: Russ. J. Appl. Chem., 1967, vol. 40, pp. 1386–90. E.A. Bordyushkova, P.I. Prostsenko, and L.N. Venerovskaya: Russ. J. Appl. Chem., 1967, vol. 40, pp. 1386–90.
38.
39.
Zurück zum Zitat R.I. Olivares and W.Edwards: Thermochimica Acta, 2013, 560, pp. 34–42.CrossRef R.I. Olivares and W.Edwards: Thermochimica Acta, 2013, 560, pp. 34–42.CrossRef
40.
Zurück zum Zitat R.W. Bradshaw, J.G. Cordaro, and N.P. Siegel: in SME 2009 3rd International Conference on Energy Sustainability collocated with the Heat Transfer and InterPACK09 Conferences, 2009, pp. 615–24. R.W. Bradshaw, J.G. Cordaro, and N.P. Siegel: in SME 2009 3rd International Conference on Energy Sustainability collocated with the Heat Transfer and InterPACK09 Conferences, 2009, pp. 615–24.
41.
Zurück zum Zitat T.M. Oza: J. Ind. Chem. Soc., 1945, vol. 22, pp. 173–80. T.M. Oza: J. Ind. Chem. Soc., 1945, vol. 22, pp. 173–80.
42.
Zurück zum Zitat T.M. Oza and S.A. Patel: J. Ind. Chem. Soc., 1954, vol. 31, p. 519. T.M. Oza and S.A. Patel: J. Ind. Chem. Soc., 1954, vol. 31, p. 519.
43.
Zurück zum Zitat R.N. Kust and J.D. Burke: Inorg. Nucl. Chem. Lett., 1970, vol. 6, pp. 333–35.CrossRef R.N. Kust and J.D. Burke: Inorg. Nucl. Chem. Lett., 1970, vol. 6, pp. 333–35.CrossRef
45.
Zurück zum Zitat R.W. Mar, R.W. Bradshaw, R.W. Carling, and A.S. Nagelberg: International Symposium on Molten Salt Chemistry and Technology 1, 1983, pp. 285–88. R.W. Mar, R.W. Bradshaw, R.W. Carling, and A.S. Nagelberg: International Symposium on Molten Salt Chemistry and Technology 1, 1983, pp. 285–88.
46.
47.
48.
Zurück zum Zitat G.D. Sirotkin: Russ. J. Inorg. Chem., 1959, vol. 4, pp. 1180–84. G.D. Sirotkin: Russ. J. Inorg. Chem., 1959, vol. 4, pp. 1180–84.
49.
Zurück zum Zitat C.J. Hardy and B.O. Field: J. Chem. Soc., 1963, vol. 11, pp. 5130–34.CrossRef C.J. Hardy and B.O. Field: J. Chem. Soc., 1963, vol. 11, pp. 5130–34.CrossRef
50.
Zurück zum Zitat D.A. Nissen and D.E. Meeker: Inorg. Chem., 1983, vol. 22, pp. 716–21.CrossRef D.A. Nissen and D.E. Meeker: Inorg. Chem., 1983, vol. 22, pp. 716–21.CrossRef
51.
Zurück zum Zitat W. Benaissa and D. Carson: 45th Annual Loss Preventive Symp. 2011 (LPS), AIChE, Chicago, IL, 2011. W. Benaissa and D. Carson: 45th Annual Loss Preventive Symp. 2011 (LPS), AIChE, Chicago, IL, 2011.
52.
53.
Zurück zum Zitat Alfred Büchler and James L. Stauffer: J. Phys. Chem., 1966, vol. 70, pp. 4092–94.CrossRef Alfred Büchler and James L. Stauffer: J. Phys. Chem., 1966, vol. 70, pp. 4092–94.CrossRef
54.
Zurück zum Zitat Thomas Bauer, Nicole Pfleger, Nils Breidenbach, Markus Eck, Doerte Laing, and Stefanie Kaesche: Appl. Energy, 2013, vol. 111, pp. 1114–19.CrossRef Thomas Bauer, Nicole Pfleger, Nils Breidenbach, Markus Eck, Doerte Laing, and Stefanie Kaesche: Appl. Energy, 2013, vol. 111, pp. 1114–19.CrossRef
55.
Zurück zum Zitat J. Alexander and S.G. Hindin: Ind. Eng. Chem., 1947, vol. 39, pp. 1044–49.CrossRef J. Alexander and S.G. Hindin: Ind. Eng. Chem., 1947, vol. 39, pp. 1044–49.CrossRef
56.
Zurück zum Zitat F. Paniccia and P.G. Zambonin: J. Phys. Chem., 1973, vol. 77, pp. 1810–13.CrossRef F. Paniccia and P.G. Zambonin: J. Phys. Chem., 1973, vol. 77, pp. 1810–13.CrossRef
57.
Zurück zum Zitat Geoff McConohy and Alan Kruizenga: Solar Energy, 2014, vol. 103, pp. 242–52.CrossRef Geoff McConohy and Alan Kruizenga: Solar Energy, 2014, vol. 103, pp. 242–52.CrossRef
58.
Zurück zum Zitat Kurt H. Stern: High Temperature Properties and Thermal Decomposition of Inorganic Salts with Oxyanions, CRC Press, Boca Raton, FL, 2000. Kurt H. Stern: High Temperature Properties and Thermal Decomposition of Inorganic Salts with Oxyanions, CRC Press, Boca Raton, FL, 2000.
59.
Zurück zum Zitat J.G. Cordaro, N.C. Rubin, and R.W. Bradshaw: J. Solar Energy Eng., 2011, vol. 133, p. 011014.CrossRef J.G. Cordaro, N.C. Rubin, and R.W. Bradshaw: J. Solar Energy Eng., 2011, vol. 133, p. 011014.CrossRef
60.
Zurück zum Zitat Qiangzhi Xie, Qunzhi Zhu, and Yan Li: Nanoscale Res. Lett., 2016, vol. 11, pp. 1–7.CrossRef Qiangzhi Xie, Qunzhi Zhu, and Yan Li: Nanoscale Res. Lett., 2016, vol. 11, pp. 1–7.CrossRef
61.
Zurück zum Zitat P.D. Myers, Jr., T.E. Alam, R.Kamal, D.Y. Goswami, and E. Stefanakos: Appl. Energy, 2016, vol. 165, pp. 225–33.CrossRef P.D. Myers, Jr., T.E. Alam, R.Kamal, D.Y. Goswami, and E. Stefanakos: Appl. Energy, 2016, vol. 165, pp. 225–33.CrossRef
62.
Zurück zum Zitat Yifeng Jiang, Yanping Sun, Ming Liu, Frank Bruno, and Sean Li: Solar Energy Mater. Solar Cells, 2016, vol. 152, pp. 155–60.CrossRef Yifeng Jiang, Yanping Sun, Ming Liu, Frank Bruno, and Sean Li: Solar Energy Mater. Solar Cells, 2016, vol. 152, pp. 155–60.CrossRef
63.
64.
Zurück zum Zitat Joohyun Seo and Donghyun Shin: Appl. Therm. Eng., 2016, vol. 102, pp. 144–48.CrossRef Joohyun Seo and Donghyun Shin: Appl. Therm. Eng., 2016, vol. 102, pp. 144–48.CrossRef
65.
Zurück zum Zitat Nicole Pfleger, Thomas Bauer, Claudia Martin, Markus Eck, and Antje Wörner: Beilstein J. Nanotechnol., 2015, vol. 6, pp. 1487–97.CrossRef Nicole Pfleger, Thomas Bauer, Claudia Martin, Markus Eck, and Antje Wörner: Beilstein J. Nanotechnol., 2015, vol. 6, pp. 1487–97.CrossRef
66.
Zurück zum Zitat S.A. Kalogirou, V.A., and G. Panayiotou: 12th International Conference on Energy Storage, 2012. S.A. Kalogirou, V.A., and G. Panayiotou: 12th International Conference on Energy Storage, 2012.
67.
Zurück zum Zitat Zalba B, Marın JM, Cabeza LF, Mehling H: Appl. Thermal Eng., 2003, vol. 23, pp. 251–83.CrossRef Zalba B, Marın JM, Cabeza LF, Mehling H: Appl. Thermal Eng., 2003, vol. 23, pp. 251–83.CrossRef
68.
Zurück zum Zitat Cammenga HK, Eysel W, Gmelin E, Hemminger W, Höhne GW, Sarge SM: Thermochimica Acta, 1993, vol. 219, pp. 333–42.CrossRef Cammenga HK, Eysel W, Gmelin E, Hemminger W, Höhne GW, Sarge SM: Thermochimica Acta, 1993, vol. 219, pp. 333–42.CrossRef
69.
Zurück zum Zitat G.W.H. Höhne, H.K. Cammenga, W. Eysel, E. Gmelin, and W. Hemminger: Thermochimica Acta, 1990, vol. 160, pp. 1–12.CrossRef G.W.H. Höhne, H.K. Cammenga, W. Eysel, E. Gmelin, and W. Hemminger: Thermochimica Acta, 1990, vol. 160, pp. 1–12.CrossRef
70.
Zurück zum Zitat P.K. Gallagher, M.E. Brown, and R.B. Kemp: Handbook of Thermal Analysis and Calorimetry, Elsevier, New York, 1998. P.K. Gallagher, M.E. Brown, and R.B. Kemp: Handbook of Thermal Analysis and Calorimetry, Elsevier, New York, 1998.
72.
Zurück zum Zitat Sarge SM, Gmelin E, Höhne GW, Cammenga HK, Hemminger W, Eysel W: Thermochimica Acta, 1994, vol. 247, pp. 129–68.CrossRef Sarge SM, Gmelin E, Höhne GW, Cammenga HK, Hemminger W, Eysel W: Thermochimica Acta, 1994, vol. 247, pp. 129–68.CrossRef
73.
Zurück zum Zitat Sabbah R, Xu-Wu A, Chickos JS, Leitão MP, Roux MV, Torres LA: Thermochimica Acta, 1999, vol. 331, pp. 93–204.CrossRef Sabbah R, Xu-Wu A, Chickos JS, Leitão MP, Roux MV, Torres LA: Thermochimica Acta, 1999, vol. 331, pp. 93–204.CrossRef
74.
Zurück zum Zitat J. Emsley: The Elements, 3rd ed., Oxford Press, Oxford, 1989. J. Emsley: The Elements, 3rd ed., Oxford Press, Oxford, 1989.
76.
Zurück zum Zitat Mohammad MB, Brooks GA, Rhamdhani MA: Renewable Energy, 2017, vol. 104, pp. 76–87.CrossRef Mohammad MB, Brooks GA, Rhamdhani MA: Renewable Energy, 2017, vol. 104, pp. 76–87.CrossRef
77.
78.
Zurück zum Zitat S Aduru, S Contarini, JW Rabalais: J. Phys. Chem., 1986, vol. 90, pp. 1683–88.CrossRef S Aduru, S Contarini, JW Rabalais: J. Phys. Chem., 1986, vol. 90, pp. 1683–88.CrossRef
79.
Zurück zum Zitat Kevin G. Zeeb, Malcolm G. Lowings, Keith G. McCurdy, and Loren G. Hepler: Thermochimica Acta, 1980, vol. 40, pp. 245–49.CrossRef Kevin G. Zeeb, Malcolm G. Lowings, Keith G. McCurdy, and Loren G. Hepler: Thermochimica Acta, 1980, vol. 40, pp. 245–49.CrossRef
80.
Zurück zum Zitat Yoshio Hoshino, Taizo Utsunomiya, and Osami Abe: Bull. Chem. Soc. Jpn., 1981, vol. 54, pp. 1385–91.CrossRef Yoshio Hoshino, Taizo Utsunomiya, and Osami Abe: Bull. Chem. Soc. Jpn., 1981, vol. 54, pp. 1385–91.CrossRef
81.
Zurück zum Zitat V.V. Deshpande, M.D. Karkhanavala, and U.R.K. Rao: J. Therm. Analy. Calorim., 1974, vol. 6, pp. 613–21.CrossRef V.V. Deshpande, M.D. Karkhanavala, and U.R.K. Rao: J. Therm. Analy. Calorim., 1974, vol. 6, pp. 613–21.CrossRef
82.
Zurück zum Zitat D. Sergeev, E. Yazhenskikh, D. Kobertz, K. Hack, and M. Müller: Calphad, 2015, vol. 51, pp. 111–24.CrossRef D. Sergeev, E. Yazhenskikh, D. Kobertz, K. Hack, and M. Müller: Calphad, 2015, vol. 51, pp. 111–24.CrossRef
83.
Zurück zum Zitat Rao CN, Prakash B, Natarajan M: Nat. Stand., 1975, vol. 12, pp. 1–48. Rao CN, Prakash B, Natarajan M: Nat. Stand., 1975, vol. 12, pp. 1–48.
84.
Zurück zum Zitat D.M. Speros and R.L. Woodhouse: J. Phys. Chem., 1963, vol. 67, pp. 2164–68.CrossRef D.M. Speros and R.L. Woodhouse: J. Phys. Chem., 1963, vol. 67, pp. 2164–68.CrossRef
85.
Zurück zum Zitat G. Widmann, Product Technical Data, 2001. G. Widmann, Product Technical Data, 2001.
86.
Zurück zum Zitat Ramana G. Reddy, Tao Wang, and Divakar Mantha: Thermochimica Acta, 2012, vol. 531, pp. 6–11.CrossRef Ramana G. Reddy, Tao Wang, and Divakar Mantha: Thermochimica Acta, 2012, vol. 531, pp. 6–11.CrossRef
87.
88.
Zurück zum Zitat D.J. Rogers and G.J. Janz: Melting-crystallization and pre-melting properties of NaNO 3 -KNO 3 , Rensselaer Polytechnic Institute, Troy, NY, 1984. D.J. Rogers and G.J. Janz: Melting-crystallization and pre-melting properties of NaNO 3 -KNO 3 , Rensselaer Polytechnic Institute, Troy, NY, 1984.
89.
Zurück zum Zitat William Klement: J. Inorg. Nucl. Chem., 1974, vol. 36, pp. 1916–18.CrossRef William Klement: J. Inorg. Nucl. Chem., 1974, vol. 36, pp. 1916–18.CrossRef
90.
Zurück zum Zitat O. Beneš, R.J.M. Konings, S. Wurzer, M. Sierig, and A. Dockendorf: Thermochimica Acta, 2010, vol. 509, pp. 62–66.CrossRef O. Beneš, R.J.M. Konings, S. Wurzer, M. Sierig, and A. Dockendorf: Thermochimica Acta, 2010, vol. 509, pp. 62–66.CrossRef
91.
Zurück zum Zitat C.M. Kramer and C.J. Wilson: Thermochimica Acta, 1980, vol. 42, pp. 253–64.CrossRef C.M. Kramer and C.J. Wilson: Thermochimica Acta, 1980, vol. 42, pp. 253–64.CrossRef
92.
Zurück zum Zitat M.J. Maeso and J. Largo: Thermochimica Acta, 1993, vol. 222, pp. 195–201.CrossRef M.J. Maeso and J. Largo: Thermochimica Acta, 1993, vol. 222, pp. 195–201.CrossRef
93.
Zurück zum Zitat T. Jriri, J. Rogez, C. Bergman, and J.C. Mathieu: Thermochimica Acta, 1995, vol. 266, pp. 147–61.CrossRef T. Jriri, J. Rogez, C. Bergman, and J.C. Mathieu: Thermochimica Acta, 1995, vol. 266, pp. 147–61.CrossRef
94.
Zurück zum Zitat Y. Takahashi, R. Sakamoto, and M. Kamimoto: Int. J. Thermophys., 1988, vol. 9, pp. 1081–90.CrossRef Y. Takahashi, R. Sakamoto, and M. Kamimoto: Int. J. Thermophys., 1988, vol. 9, pp. 1081–90.CrossRef
95.
Zurück zum Zitat E.A. Dancy and P. Nguyen-Duy: Thermochimica Acta, 1979, vol. 31, p. 395.CrossRef E.A. Dancy and P. Nguyen-Duy: Thermochimica Acta, 1979, vol. 31, p. 395.CrossRef
96.
97.
Zurück zum Zitat Derek J. Rogers and George J. Janz: J. Chem. Eng. Data, 1982, vol. 27, pp. 424–28.CrossRef Derek J. Rogers and George J. Janz: J. Chem. Eng. Data, 1982, vol. 27, pp. 424–28.CrossRef
98.
99.
Zurück zum Zitat M.J. Westphal, J.W. Wood, R.D. Redin, and T. Ashworth: J. Appl. Phys., 1993, vol. 73, pp. 7302–10.CrossRef M.J. Westphal, J.W. Wood, R.D. Redin, and T. Ashworth: J. Appl. Phys., 1993, vol. 73, pp. 7302–10.CrossRef
100.
Zurück zum Zitat H. Zamali and M. Jemal: J. Thermal Analysis, 1994, vol. 41, pp. 1091–99.CrossRef H. Zamali and M. Jemal: J. Thermal Analysis, 1994, vol. 41, pp. 1091–99.CrossRef
101.
Zurück zum Zitat P. Nguyen-Duy and E. A. Dancy: Thermochimica Acta, 1980, vol. 39, pp. 95–102.CrossRef P. Nguyen-Duy and E. A. Dancy: Thermochimica Acta, 1980, vol. 39, pp. 95–102.CrossRef
102.
Zurück zum Zitat Y. Dessureault, J. Sangster, and A.D. Pelton: J. Chim. Phys., 1990, vol. 87, pp. 407–53.CrossRef Y. Dessureault, J. Sangster, and A.D. Pelton: J. Chim. Phys., 1990, vol. 87, pp. 407–53.CrossRef
103.
Zurück zum Zitat G.J. Janz, F.J. Kelly, and J.L. Pérano: J. Chem. Eng. Data, 1964, vol. 9, pp. 133–36.CrossRef G.J. Janz, F.J. Kelly, and J.L. Pérano: J. Chem. Eng. Data, 1964, vol. 9, pp. 133–36.CrossRef
104.
Zurück zum Zitat H.M. Goodwin and H.T. Kalmus: Phys. Rev (Ser. I)., 1909, vol. 28, p. 1. H.M. Goodwin and H.T. Kalmus: Phys. Rev (Ser. I)., 1909, vol. 28, p. 1.
105.
106.
Zurück zum Zitat H.M. Miekk-Oja, Doctoral dissertation, Suomalainen Tiedeakatemia, 1941. H.M. Miekk-Oja, Doctoral dissertation, Suomalainen Tiedeakatemia, 1941.
107.
Zurück zum Zitat A.G. Bergman, I.S. Rassonskaya, and N.E. Shmidt: Sektora Fiz. Khim Anal. Akad. Nauk SSSR, 1955, vol. 26, pp. 156–63. A.G. Bergman, I.S. Rassonskaya, and N.E. Shmidt: Sektora Fiz. Khim Anal. Akad. Nauk SSSR, 1955, vol. 26, pp. 156–63.
108.
Zurück zum Zitat A. Mustajoki: Ann. Acad. Sci. Fenn. A, 1957, vol. 6, pp. 1–12. A. Mustajoki: Ann. Acad. Sci. Fenn. A, 1957, vol. 6, pp. 1–12.
109.
111.
Zurück zum Zitat Kutsuna H, Morita T, Fukuda K: Nippon Kikai Gakkai Ronbunshu, 1990;56(530), 3034-38. Kutsuna H, Morita T, Fukuda K: Nippon Kikai Gakkai Ronbunshu, 1990;56(530), 3034-38.
112.
Zurück zum Zitat A. Arell, and M. Varteva: Transition Energy and Temperature of TiNO 3 at the Transition I II, Suomalainen Tiedeakatemia, 1962. A. Arell, and M. Varteva: Transition Energy and Temperature of TiNO 3 at the Transition I II, Suomalainen Tiedeakatemia, 1962.
113.
Zurück zum Zitat A. Mustajoki: Ann. Acad. Sci. Fenn. A, 1962, vol. 6, pp. 1–11. A. Mustajoki: Ann. Acad. Sci. Fenn. A, 1962, vol. 6, pp. 1–11.
114.
Zurück zum Zitat N.E. Shmidt and D.N. Maksimov: Z. Fiz. Khim., 1979, vol. 53, pp. 1895–99. N.E. Shmidt and D.N. Maksimov: Z. Fiz. Khim., 1979, vol. 53, pp. 1895–99.
115.
Zurück zum Zitat J.A.A. Ketelaar and B. Strijk: Rec. Trav. Chim. Pays-Bas, 1945, vol. 64, pp. 174–82.CrossRef J.A.A. Ketelaar and B. Strijk: Rec. Trav. Chim. Pays-Bas, 1945, vol. 64, pp. 174–82.CrossRef
116.
117.
118.
Zurück zum Zitat M. Bakes, J. Dupuy, and J. Guion: Comptes Rendus Hebdomadaires Seances Acad. Sci., 1963, vol. 256, p. 2376. M. Bakes, J. Dupuy, and J. Guion: Comptes Rendus Hebdomadaires Seances Acad. Sci., 1963, vol. 256, p. 2376.
119.
Zurück zum Zitat P.W. Bridgman: Proceedings American Academy of Arts and Sciences, JSTOR, 1916, pp. 581–625. P.W. Bridgman: Proceedings American Academy of Arts and Sciences, JSTOR, 1916, pp. 581–625.
120.
Zurück zum Zitat Robert Speyer: Thermal Analysis of Materials, CRC Press, Boca Raton, FL, 1993.CrossRef Robert Speyer: Thermal Analysis of Materials, CRC Press, Boca Raton, FL, 1993.CrossRef
121.
Zurück zum Zitat E.L. Charsley, P.G. Laye, H.M. Markham, J.O. Hill, B. Berger, and T.T. Griffiths: Thermochimica Acta, 2008, vol. 469, pp. 65–70.CrossRef E.L. Charsley, P.G. Laye, H.M. Markham, J.O. Hill, B. Berger, and T.T. Griffiths: Thermochimica Acta, 2008, vol. 469, pp. 65–70.CrossRef
122.
Zurück zum Zitat E. Charrier, E.L. Charsley, P.G. Laye, H.M. Markham, B. Berger, and T.T. Griffiths: Thermochimica Acta, 2006, vol. 445, pp. 36–39.CrossRef E. Charrier, E.L. Charsley, P.G. Laye, H.M. Markham, B. Berger, and T.T. Griffiths: Thermochimica Acta, 2006, vol. 445, pp. 36–39.CrossRef
123.
Zurück zum Zitat E.M. Brown: Introduction to Thermal Analysis: Techniques and Applications, 2nd ed., Kluwer Academic Publishers, Dordrecht, 2001. E.M. Brown: Introduction to Thermal Analysis: Techniques and Applications, 2nd ed., Kluwer Academic Publishers, Dordrecht, 2001.
124.
Zurück zum Zitat C. Schick and G.W.H. Höhne: Thermochimica Acta, 1991, vol. 187, pp. 351–56.CrossRef C. Schick and G.W.H. Höhne: Thermochimica Acta, 1991, vol. 187, pp. 351–56.CrossRef
125.
Zurück zum Zitat I. Egry: in S. Seetharaman, ed., Treatise on Process Metallurgy, Elsevier, Boston, MA, 2014, pp. 61–148.CrossRef I. Egry: in S. Seetharaman, ed., Treatise on Process Metallurgy, Elsevier, Boston, MA, 2014, pp. 61–148.CrossRef
126.
Zurück zum Zitat W.J. Boettinger, U.R. Kattner, K.W. Moon, and J.H. Perepezko: DTA and Heat-Flux DSC Measurements of Alloy Melting and Freezing, U.S. Department of Commerce, Technology Administration, National Institute of Standards and Technology, 2006. W.J. Boettinger, U.R. Kattner, K.W. Moon, and J.H. Perepezko: DTA and Heat-Flux DSC Measurements of Alloy Melting and Freezing, U.S. Department of Commerce, Technology Administration, National Institute of Standards and Technology, 2006.
127.
Zurück zum Zitat J. Schawe and C. Schick: Thermochimica Acta, 1991, vol. 187, pp. 335–49.CrossRef J. Schawe and C. Schick: Thermochimica Acta, 1991, vol. 187, pp. 335–49.CrossRef
128.
129.
Zurück zum Zitat M.G. Lowings, K.G. McCurdy, and L.G. Hepler: Thermochimica Acta, 1978, vol. 23, pp. 365–70.CrossRef M.G. Lowings, K.G. McCurdy, and L.G. Hepler: Thermochimica Acta, 1978, vol. 23, pp. 365–70.CrossRef
Metadaten
Titel
Premelting, Melting, and Degradation Properties of Molten Alkali Nitrates: LiNO3, NaNO3, KNO3, and Binary NaNO3-KNO3
verfasst von
Mehedi Bin Mohammad
Geoffrey Alan Brooks
Muhammad Akbar Rhamdhani
Publikationsdatum
26.02.2018
Verlag
Springer US
Erschienen in
Metallurgical and Materials Transactions B / Ausgabe 3/2018
Print ISSN: 1073-5615
Elektronische ISSN: 1543-1916
DOI
https://doi.org/10.1007/s11663-018-1205-z

Weitere Artikel der Ausgabe 3/2018

Metallurgical and Materials Transactions B 3/2018 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.