Skip to main content
Erschienen in: Journal of Polymer Research 12/2016

01.12.2016 | ORIGINAL PAPER

Preparation and characterization of biodegradable polyurethanes composites filled with silver nanoparticles-decorated graphene

verfasst von: Cheng-Lung Wu, Chih-Yuan Tsou, Yen-Chun Tseng, Hsun-Tsing Lee, Maw-Cherng Suen, Jia-Hao Gu, Chi-Hui Tsou, Shih-Hsuan Chiu

Erschienen in: Journal of Polymer Research | Ausgabe 12/2016

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

In this study, polyurethane (PU) was synthesized using 4,4,-diphenylmethane diisocyanate (MDI) as a hard segment, polycaprolactone diol (PCL) as the soft segments and 1,4-butandiol (1,4-BD) as a chain extender. Nanosilver/graphene (Ag/G) was added to the PU matrix to prepare Ag/G/PU nanocomposites. EDS, SEM and XRD are used for assaying the silver content and characterization of Ag/G. TEM, FT-IR, XRD and EDS were used to characterize the structure and morphology of the Ag/G/PUs nanocomposites. The TEM results show that Ag/G belongs to sheet structures and is dispersed in a PU matrix. The SEM showed that the strong interfacial adhesion between the Ag/G and PU is indicated. FT-IR spectra analysis shows that the functional group of PU is free of obvious changes by adding a small amount of Ag/G in the PU matrix. XRD results showed that the main crystalline peak (26°) of Ag/G became more apparent with increasing content of Ag/G, and EDS showed that the content of Ag increased with increasing content of Ag/G in the Ag/G/PUs nanocomposites. The thermal stability and mechanical properties of Ag/G/PUs nanocomposites are improved with increasing content of Ag/G. Contact angle and AFM results showed that the hydrophobicity and surface roughness increased with increasing content of Ag/G. Moreover, the Ag/G/PUs nanocomposites exhibit antibacterial activities toward Staphylococcus aureus as well as Escherichia coli and their antibacterial rates increase with increasing Ag/G. In addition, the electrical conductivity measurements showed that both surface and volume resistance of the Ag/G/PUs nanocomposites decreased as the amount of Ag/G increased.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Wang CH, Auad ML, Marcovich NE, Nutt S (2008) Synthesis and characterization of organically modified attapulgite/polyurethane nanocomposites. J Appl Polym Sci 109:2562–2570CrossRef Wang CH, Auad ML, Marcovich NE, Nutt S (2008) Synthesis and characterization of organically modified attapulgite/polyurethane nanocomposites. J Appl Polym Sci 109:2562–2570CrossRef
2.
Zurück zum Zitat Gugliuzza A, Clarizia G, Golemme G, Drioli E (2002) New breathable and waterproof coatings for textiles: effect of an aliphatic polyurethane on the formation of PEEK-WC porous membranes. Eur Polym J 38:235–242CrossRef Gugliuzza A, Clarizia G, Golemme G, Drioli E (2002) New breathable and waterproof coatings for textiles: effect of an aliphatic polyurethane on the formation of PEEK-WC porous membranes. Eur Polym J 38:235–242CrossRef
3.
Zurück zum Zitat Tien YI, Wei KH (2001) Hydrogen bonding and mechanical properties in segmented montmorillonite/polyurethane nanocomposites of different hard segment ratios. Polymer 42:3213–3221CrossRef Tien YI, Wei KH (2001) Hydrogen bonding and mechanical properties in segmented montmorillonite/polyurethane nanocomposites of different hard segment ratios. Polymer 42:3213–3221CrossRef
4.
Zurück zum Zitat Park HB, Lee YM (2002) Separation of toluene/nitrogen through segmented polyurethane and polyurethane urea membranes with different soft segments. J Membr Sci 197:283–296CrossRef Park HB, Lee YM (2002) Separation of toluene/nitrogen through segmented polyurethane and polyurethane urea membranes with different soft segments. J Membr Sci 197:283–296CrossRef
5.
Zurück zum Zitat Abraham GA, de Queiroz AAA, San Roman JS (2001) Hydrophilic hybrid IPNs of segmented polyurethanes and copolymers of vinylpyrrolidone for applications in medicine. Biomaterials 22:1971–1985CrossRef Abraham GA, de Queiroz AAA, San Roman JS (2001) Hydrophilic hybrid IPNs of segmented polyurethanes and copolymers of vinylpyrrolidone for applications in medicine. Biomaterials 22:1971–1985CrossRef
6.
Zurück zum Zitat Mequanint K, Sanderson R (2003) Nano-structure phosphorus-containing polyurethane dispersions: synthesis and crosslinking with melamine formaldehyde resin. Polymer 44:2631–2639CrossRef Mequanint K, Sanderson R (2003) Nano-structure phosphorus-containing polyurethane dispersions: synthesis and crosslinking with melamine formaldehyde resin. Polymer 44:2631–2639CrossRef
7.
Zurück zum Zitat Okada M (2002) Chemical syntheses of biodegradable polymers. Prog Polym Sci 27:87–133CrossRef Okada M (2002) Chemical syntheses of biodegradable polymers. Prog Polym Sci 27:87–133CrossRef
8.
Zurück zum Zitat Coulembier O, Degee P, Hedrick JL, Dubois P (2006) From controlled ring-opening polymerization to biodegradable aliphatic polyester: especially poly(betamalic acid) derivatives. Prog Polym Sci 31:723–747CrossRef Coulembier O, Degee P, Hedrick JL, Dubois P (2006) From controlled ring-opening polymerization to biodegradable aliphatic polyester: especially poly(betamalic acid) derivatives. Prog Polym Sci 31:723–747CrossRef
9.
Zurück zum Zitat Huang SJ (1985) Encyclopedia of polymer science and engineering 2:220-243 Huang SJ (1985) Encyclopedia of polymer science and engineering 2:220-243
10.
Zurück zum Zitat Nair LS, Laurencin CT (2007) Biodegradable polymers as biomaterials. Prog Polym Sci 32:762–798CrossRef Nair LS, Laurencin CT (2007) Biodegradable polymers as biomaterials. Prog Polym Sci 32:762–798CrossRef
11.
Zurück zum Zitat Pena J, Corrales T, Izquierdo-Barba I, Doadrio AL, Vallet-Regi M (2006) Long term degradation of poly(ε-caprolactone) films in biologically related fluids. Polym Degrad Stab 91:1424–1432CrossRef Pena J, Corrales T, Izquierdo-Barba I, Doadrio AL, Vallet-Regi M (2006) Long term degradation of poly(ε-caprolactone) films in biologically related fluids. Polym Degrad Stab 91:1424–1432CrossRef
12.
Zurück zum Zitat Chandra R, Rustgi R (1998) Biodegradable polymers. Prog Polym Sci 23:1273–1335CrossRef Chandra R, Rustgi R (1998) Biodegradable polymers. Prog Polym Sci 23:1273–1335CrossRef
13.
Zurück zum Zitat Tatai L, Moore TG, Adhikari R, Malherbe F, Jayasekara R, Griffiths I (2007) Thermoplastic biodegradable polyurethanes: the effect of chain extender structure on properties and in-vitro degradation. Biomaterials 28:5407–5417CrossRef Tatai L, Moore TG, Adhikari R, Malherbe F, Jayasekara R, Griffiths I (2007) Thermoplastic biodegradable polyurethanes: the effect of chain extender structure on properties and in-vitro degradation. Biomaterials 28:5407–5417CrossRef
14.
Zurück zum Zitat Heijkants RGJC, Schwab LW, van Calck RV, de Groot JH, Pennings AJ, Schouten AJ (2005) Extruder synthesis of a new class of polyurethanes: polyacylurethanes based on poly(ε-caprolactone) oligomers. Polymer 46:8981–8989CrossRef Heijkants RGJC, Schwab LW, van Calck RV, de Groot JH, Pennings AJ, Schouten AJ (2005) Extruder synthesis of a new class of polyurethanes: polyacylurethanes based on poly(ε-caprolactone) oligomers. Polymer 46:8981–8989CrossRef
15.
Zurück zum Zitat Li FG, Hou JN, Zhu W, Zhang XA, Xu M, Luo XL (1996) Crystallinity and morphology of segmented polyurethanes with different soft-segment length. J Appl Polym Sci 62:631–638CrossRef Li FG, Hou JN, Zhu W, Zhang XA, Xu M, Luo XL (1996) Crystallinity and morphology of segmented polyurethanes with different soft-segment length. J Appl Polym Sci 62:631–638CrossRef
16.
Zurück zum Zitat Jiang X, Li JH, Ding MM, Tan H, Ling QY, Zhong YP (2007) Synthesis and degradation of nontoxic biodegradable waterborne polyurethanes elastomer with poly(ε-caprolactone) and poly(ethylene glycol) as soft segment. Eur Polym J 43:1838–1846CrossRef Jiang X, Li JH, Ding MM, Tan H, Ling QY, Zhong YP (2007) Synthesis and degradation of nontoxic biodegradable waterborne polyurethanes elastomer with poly(ε-caprolactone) and poly(ethylene glycol) as soft segment. Eur Polym J 43:1838–1846CrossRef
17.
Zurück zum Zitat Ayres E, Oréfice RL, Yoshida MI (2007) Phase morphology of hydrolysable polyurethanes derived from aqueous dispersions. Eur Polym J 43:3510–3521CrossRef Ayres E, Oréfice RL, Yoshida MI (2007) Phase morphology of hydrolysable polyurethanes derived from aqueous dispersions. Eur Polym J 43:3510–3521CrossRef
18.
Zurück zum Zitat Tsou CH, Lee HT, Tsai HA, Cheng HJ, Suen MC (2013) Synthesis and properties of biodegradable polycaprolactone/polyurethanes by using 2,6-pyridinedimethanol as a chain extender. Polym Degrad Stab 98:643–650CrossRef Tsou CH, Lee HT, Tsai HA, Cheng HJ, Suen MC (2013) Synthesis and properties of biodegradable polycaprolactone/polyurethanes by using 2,6-pyridinedimethanol as a chain extender. Polym Degrad Stab 98:643–650CrossRef
19.
Zurück zum Zitat Jeong EH, Yang J, Lee HS, Seo SW, Baik DH, Kim J, Youk JH (2008) Effective preparation and characterization of montmorillonite/poly(ε-caprolactone)-based polyurethane nanocomposites. J Appl Polym Sci 107:803–809CrossRef Jeong EH, Yang J, Lee HS, Seo SW, Baik DH, Kim J, Youk JH (2008) Effective preparation and characterization of montmorillonite/poly(ε-caprolactone)-based polyurethane nanocomposites. J Appl Polym Sci 107:803–809CrossRef
20.
Zurück zum Zitat Chen H, Lu H, Zhou Y, Zheng M, Ke C, Zeng D (2012) Study on thermal properties of polyurethane nanocomposites based on organosepiolite. Polym Degrad Stab 97:242–247CrossRef Chen H, Lu H, Zhou Y, Zheng M, Ke C, Zeng D (2012) Study on thermal properties of polyurethane nanocomposites based on organosepiolite. Polym Degrad Stab 97:242–247CrossRef
21.
Zurück zum Zitat Li D, Muller MB, Gilje S, Kaner RB, Wallace GG (2008) Processable aqueous dispersions of graphene nanosheets. Nat Nanotechnol 3:101–105CrossRef Li D, Muller MB, Gilje S, Kaner RB, Wallace GG (2008) Processable aqueous dispersions of graphene nanosheets. Nat Nanotechnol 3:101–105CrossRef
22.
Zurück zum Zitat Stankovich S, Piner RD, Chen XQ, Wu NQ, Nguyen ST, Ruoff RS (2006) Stable aqueous dispersions of graphitic nanoplatelets via the reduction of exfoliated graphite oxide in the presence of poly(sodium 4-styrenesulfonate). J Mater Chem 16:155–158CrossRef Stankovich S, Piner RD, Chen XQ, Wu NQ, Nguyen ST, Ruoff RS (2006) Stable aqueous dispersions of graphitic nanoplatelets via the reduction of exfoliated graphite oxide in the presence of poly(sodium 4-styrenesulfonate). J Mater Chem 16:155–158CrossRef
23.
Zurück zum Zitat Allen MJ, Tung VC, Kaner RB (2010) Honeycomb carbon: a review of graphene. Chem Rev 110:132–145CrossRef Allen MJ, Tung VC, Kaner RB (2010) Honeycomb carbon: a review of graphene. Chem Rev 110:132–145CrossRef
24.
Zurück zum Zitat Scognamillo S, Gioffredi E, Piccinini M, Lazzari M, Alzari V, Nuvoli D, Sanna R, Piga D, Malucelli G, Mariani A (2012) Synthesis and characterization of nanocomposites of thermoplastic polyurethane with both graphene and graphene nanoribbon fillers. Polymer 53:4019–4024CrossRef Scognamillo S, Gioffredi E, Piccinini M, Lazzari M, Alzari V, Nuvoli D, Sanna R, Piga D, Malucelli G, Mariani A (2012) Synthesis and characterization of nanocomposites of thermoplastic polyurethane with both graphene and graphene nanoribbon fillers. Polymer 53:4019–4024CrossRef
25.
Zurück zum Zitat Cai D, Jin J, Yusoh K, Rafiq R, Song M (2012) High performance polyurethane/functionalized graphene nanocomposites with improved mechanical and thermal properties. Compos Sci Technol 72:702–707CrossRef Cai D, Jin J, Yusoh K, Rafiq R, Song M (2012) High performance polyurethane/functionalized graphene nanocomposites with improved mechanical and thermal properties. Compos Sci Technol 72:702–707CrossRef
26.
Zurück zum Zitat Kumar M, Chung JS, Kong BS, Kim EJ, Hur SH (2013) Synthesis of graphene–polyurethane nanocomposite using highly functionalized graphene oxide as pseudo-crosslinker. Mater Lett 106:319–321CrossRef Kumar M, Chung JS, Kong BS, Kim EJ, Hur SH (2013) Synthesis of graphene–polyurethane nanocomposite using highly functionalized graphene oxide as pseudo-crosslinker. Mater Lett 106:319–321CrossRef
27.
Zurück zum Zitat Yadav SK, Cho JW (2013) Functionalized graphene nanoplatelets for enhanced mechanical and thermal properties of polyurethane nanocomposites. Appl Surf Sci 266:360–367CrossRef Yadav SK, Cho JW (2013) Functionalized graphene nanoplatelets for enhanced mechanical and thermal properties of polyurethane nanocomposites. Appl Surf Sci 266:360–367CrossRef
28.
Zurück zum Zitat Cai D, Jin J, Yusoh K, Rafiq R, Song M (2012) High performance polyurethane/functionalized graphene nanocomposites with improved mechanical and thermal properties. Combust Sci Technol 72:702–707CrossRef Cai D, Jin J, Yusoh K, Rafiq R, Song M (2012) High performance polyurethane/functionalized graphene nanocomposites with improved mechanical and thermal properties. Combust Sci Technol 72:702–707CrossRef
29.
Zurück zum Zitat Liao KH, Qian Y, Macosko CW (2012) Ultralow percolation graphene/polyurethane acrylate nanocomposites. Polymer 53:3756–3761CrossRef Liao KH, Qian Y, Macosko CW (2012) Ultralow percolation graphene/polyurethane acrylate nanocomposites. Polymer 53:3756–3761CrossRef
30.
Zurück zum Zitat Kuila T, Bose S, Khanra P, Kim NH, Rhee KY, Lee JH (2011) Characterization and properties of in situ emulsion polymerized poly(methyl methacrylate)/graphene nanocomposites. Compos Part A 42:1856–1861CrossRef Kuila T, Bose S, Khanra P, Kim NH, Rhee KY, Lee JH (2011) Characterization and properties of in situ emulsion polymerized poly(methyl methacrylate)/graphene nanocomposites. Compos Part A 42:1856–1861CrossRef
31.
Zurück zum Zitat Wang X, Weiyi X, Lei S, Yang H, Hu Y, Yeoh GH (2012) Fabrication and characterization of graphene-reinforced waterborne polyurethane nanocomposite coatings by the sol–gel method. Surf Coat Technol 206:4778–4784CrossRef Wang X, Weiyi X, Lei S, Yang H, Hu Y, Yeoh GH (2012) Fabrication and characterization of graphene-reinforced waterborne polyurethane nanocomposite coatings by the sol–gel method. Surf Coat Technol 206:4778–4784CrossRef
32.
Zurück zum Zitat Lee SK, Kim BK (2014) Synthesis and properties of shape memorygraphene oxide/polyurethane chemical hybrids. Polym Int 63:1197–1202CrossRef Lee SK, Kim BK (2014) Synthesis and properties of shape memorygraphene oxide/polyurethane chemical hybrids. Polym Int 63:1197–1202CrossRef
33.
Zurück zum Zitat Oh SM, Oh KM, Dao TD, Lee H, Jeong HM, Kimb BK (2013) The modification of graphene with alcohols and its use in shape memory polyurethane composites. Polym Int 62:54–63CrossRef Oh SM, Oh KM, Dao TD, Lee H, Jeong HM, Kimb BK (2013) The modification of graphene with alcohols and its use in shape memory polyurethane composites. Polym Int 62:54–63CrossRef
34.
Zurück zum Zitat Holder IA, Durkec P, Supp AP, Boyce ST (2013) Assessment of a silver coated barrier dressing for potential use with skin grafts on excised burns. Burns 29:445–448CrossRef Holder IA, Durkec P, Supp AP, Boyce ST (2013) Assessment of a silver coated barrier dressing for potential use with skin grafts on excised burns. Burns 29:445–448CrossRef
35.
Zurück zum Zitat Venkateswarlu K, Rameshbabu N, Bose AC, Muthupandi V, Subramanian S, MubarakAli D, Thajuddin N (2012) Fabrication of corrosion resistant, bioactive and antibacterial silver substituted bydroxyapatite/titania composite coating on Cp Ti. Ceram Int 38:731–740CrossRef Venkateswarlu K, Rameshbabu N, Bose AC, Muthupandi V, Subramanian S, MubarakAli D, Thajuddin N (2012) Fabrication of corrosion resistant, bioactive and antibacterial silver substituted bydroxyapatite/titania composite coating on Cp Ti. Ceram Int 38:731–740CrossRef
36.
Zurück zum Zitat Kumar A, Vemula PK, Ajayan PM, John G (2008) Silver-nanoparticle-embedded antimicrobial paints based on vegetable oil. Nat Mater 7:236–241CrossRef Kumar A, Vemula PK, Ajayan PM, John G (2008) Silver-nanoparticle-embedded antimicrobial paints based on vegetable oil. Nat Mater 7:236–241CrossRef
37.
Zurück zum Zitat Hung HS, Hsu SH (2007) Biological performances of poly(ether)urethane-silver nanocomposites. Nanotechnology 18 Hung HS, Hsu SH (2007) Biological performances of poly(ether)urethane-silver nanocomposites. Nanotechnology 18
38.
Zurück zum Zitat Wang Y, Zhang Q, Fu Q (2003) Compatibilization of immiscible poly(propylene)/polystyrene blends using clay. Macromol Rapid Commun 24:231–235CrossRef Wang Y, Zhang Q, Fu Q (2003) Compatibilization of immiscible poly(propylene)/polystyrene blends using clay. Macromol Rapid Commun 24:231–235CrossRef
39.
Zurück zum Zitat Prabhakar PK, Raj S, Anuradha PR, Sawant SN, Doble M (2011) Biocompatibility studies on polyaniline and polyaniline–silver nanoparticle coated polyurethane composite. Colloids Surf B 86:146–153CrossRef Prabhakar PK, Raj S, Anuradha PR, Sawant SN, Doble M (2011) Biocompatibility studies on polyaniline and polyaniline–silver nanoparticle coated polyurethane composite. Colloids Surf B 86:146–153CrossRef
40.
Zurück zum Zitat Zhang K, Zhang Y, Wang S (2013) Enhancing thermoelectric properties of organic composites through hierarchical nanostructures. Sci Rep 3:3448–3454 Zhang K, Zhang Y, Wang S (2013) Enhancing thermoelectric properties of organic composites through hierarchical nanostructures. Sci Rep 3:3448–3454
41.
Zurück zum Zitat Kun Z, Yue Z, Shiren W (2013) Enhancing thermoelectric properties of organic composites through hierarchical nanostructures. Sci Rep 3:3448 Kun Z, Yue Z, Shiren W (2013) Enhancing thermoelectric properties of organic composites through hierarchical nanostructures. Sci Rep 3:3448
42.
Zurück zum Zitat Cho JW, So JH (2006) Polyurethane-silver fibers prepared by infiltration and reduction of silver nitrate. Mater Lett 60:2653–2656CrossRef Cho JW, So JH (2006) Polyurethane-silver fibers prepared by infiltration and reduction of silver nitrate. Mater Lett 60:2653–2656CrossRef
43.
Zurück zum Zitat Zhang Z, Zhang L, Wang S, Chen W, Lei Y (2001) A convenient route to polyacrylonitrile/silver nanoparticle composite by simultaneous polymerization–reduction approach. Polymer 42:8315–8318CrossRef Zhang Z, Zhang L, Wang S, Chen W, Lei Y (2001) A convenient route to polyacrylonitrile/silver nanoparticle composite by simultaneous polymerization–reduction approach. Polymer 42:8315–8318CrossRef
44.
Zurück zum Zitat Crawford DM, Bass RG, Haas TW (1998) Strain effects on thermal transitions and mechanical properties of thermoplastic polyurethane elastomers. Thermochim Acta 323:53–61CrossRef Crawford DM, Bass RG, Haas TW (1998) Strain effects on thermal transitions and mechanical properties of thermoplastic polyurethane elastomers. Thermochim Acta 323:53–61CrossRef
45.
Zurück zum Zitat Vilas JL, Laza JM, Rodríguez C, Rodríguez M, León LM (2013) New polyurethane-based magnetostrictive composites: dynamical mechanical properties. Polym Eng Sci 53:744–751CrossRef Vilas JL, Laza JM, Rodríguez C, Rodríguez M, León LM (2013) New polyurethane-based magnetostrictive composites: dynamical mechanical properties. Polym Eng Sci 53:744–751CrossRef
Metadaten
Titel
Preparation and characterization of biodegradable polyurethanes composites filled with silver nanoparticles-decorated graphene
verfasst von
Cheng-Lung Wu
Chih-Yuan Tsou
Yen-Chun Tseng
Hsun-Tsing Lee
Maw-Cherng Suen
Jia-Hao Gu
Chi-Hui Tsou
Shih-Hsuan Chiu
Publikationsdatum
01.12.2016
Verlag
Springer Netherlands
Erschienen in
Journal of Polymer Research / Ausgabe 12/2016
Print ISSN: 1022-9760
Elektronische ISSN: 1572-8935
DOI
https://doi.org/10.1007/s10965-016-1138-7

Weitere Artikel der Ausgabe 12/2016

Journal of Polymer Research 12/2016 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.