Skip to main content
Erschienen in: Rare Metals 3/2020

15.05.2019

Preparation and characterization of (CeO2)x–(Fe2O3)1−x nanocomposites: reduction kinetics and hydrogen storage

verfasst von: Shimaa G. Sayed, Waleed M. A. El Rouby, Ahmed A. Farghali

Erschienen in: Rare Metals | Ausgabe 3/2020

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

A series of nanosized CeO2–Fe2O3 mixed-oxide nanocomposites with different Ce4+/Fe3+ molar ratios were successfully prepared by a co-precipitation technique. The surface area increased with Fe2O3 content increasing up to 60 wt% in the composite. However, with further increase in Fe2O3 content, the surface area began to decrease. The reduction processes of the CeO2–Fe2O3 nanocomposites were studied in a hydrogen atmosphere at 300–600 °C. The reduction rates increased by increasing both the temperature and Fe2O3 content in the nanocomposites. The microstructure of the reduced composites at 500 °C illustrated the presence of a considerable number of macro- and micro-pores. The activation energy values were calculated which were in the range of 3.56–5.37 kJ·mol−1 at the initial stages (up to 35% reduction) and 5.21–10.2 kJ·mol−1 at the final stages (up to 80% reduction) of reduction. The rate-controlling mechanisms in both the initial and final reduction stages were determined, and the initial reaction stage was controlled by combined gaseous diffusion and interfacial chemical reaction mechanisms for all the composites except for pure CeO2, which was controlled by a chemical reaction mechanism. The final reaction stage was controlled by a gaseous diffusion mechanism for some composites, while for the others it was controlled by combined gaseous diffusion and interfacial chemical reaction mechanisms. The hydrogen sorption properties of the nanocomposites were studied by pressure composition isotherms using a volumetric method. Hydrogen storage in the nanocomposites increased by increasing the temperature because of the formation of oxygen vacancies which enhance atomic H adsorption and function as strong adsorption sites forming more metal hydride covalent bonds.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Literatur
[1]
Zurück zum Zitat Bao H, Chen X, Fang J, Jiang Z, Huang W. Structure-activity relation of Fe2O3–CeO2 composite catalysts in CO oxidation. Catal Lett. 2008;125(1–2):160. Bao H, Chen X, Fang J, Jiang Z, Huang W. Structure-activity relation of Fe2O3–CeO2 composite catalysts in CO oxidation. Catal Lett. 2008;125(1–2):160.
[3]
Zurück zum Zitat Xiao S, Mei H, Han D, Dassios KG, Cheng L. Ultralight lamellar amorphous carbon foam nanostructured by SiC nanowires for tunable electromagnetic wave absorption. Carbon. 2017;122:718. Xiao S, Mei H, Han D, Dassios KG, Cheng L. Ultralight lamellar amorphous carbon foam nanostructured by SiC nanowires for tunable electromagnetic wave absorption. Carbon. 2017;122:718.
[4]
Zurück zum Zitat Mei H, Zhao X, Bai S, Li Q, Xia J, Bai H, Cheng L. Tuning SERS properties of pattern-based MWNTs-AuNPs substrates by adjustment of the pattern spacings. Carbon. 2018;136:38. Mei H, Zhao X, Bai S, Li Q, Xia J, Bai H, Cheng L. Tuning SERS properties of pattern-based MWNTs-AuNPs substrates by adjustment of the pattern spacings. Carbon. 2018;136:38.
[5]
Zurück zum Zitat Zhu X, Sun L, Zheng Y, Wang H, Wei Y, Li K. CeO2 modified Fe2O3 for the chemical hydrogen storage and production via cyclic water splitting. Int J Hydrogen Energy. 2014;39(25):13381. Zhu X, Sun L, Zheng Y, Wang H, Wei Y, Li K. CeO2 modified Fe2O3 for the chemical hydrogen storage and production via cyclic water splitting. Int J Hydrogen Energy. 2014;39(25):13381.
[6]
Zurück zum Zitat Channei D, Inceesungvorn B, Wetchakun N, Phanichphant S, Nakaruk A, Koshy P, Sorrell C. Photocatalytic activity under visible light of Fe-doped CeO2 nanoparticles synthesized by flame spray pyrolysis. Ceram Int. 2013;39(3):3129. Channei D, Inceesungvorn B, Wetchakun N, Phanichphant S, Nakaruk A, Koshy P, Sorrell C. Photocatalytic activity under visible light of Fe-doped CeO2 nanoparticles synthesized by flame spray pyrolysis. Ceram Int. 2013;39(3):3129.
[8]
Zurück zum Zitat Arul NS, Mangalaraj D, Ramachandran R, Grace AN, Han JI. Fabrication of CeO2/Fe2O3 composite nanospindles for enhanced visible light driven photocatalysts and supercapacitor electrodes. J Mater Chem A. 2015;3(29):15248. Arul NS, Mangalaraj D, Ramachandran R, Grace AN, Han JI. Fabrication of CeO2/Fe2O3 composite nanospindles for enhanced visible light driven photocatalysts and supercapacitor electrodes. J Mater Chem A. 2015;3(29):15248.
[9]
Zurück zum Zitat Mei H, Huang W, Hua C, Xu Y, Cheng L. A novel approach to strengthen naturally pored wood for highly efficient photodegradation. Carbon. 2018;139:378. Mei H, Huang W, Hua C, Xu Y, Cheng L. A novel approach to strengthen naturally pored wood for highly efficient photodegradation. Carbon. 2018;139:378.
[10]
Zurück zum Zitat Kanan SM, El-Kadri OM, Abu-Yousef IA, Kanan MC. Semiconducting metal oxide based sensors for selective gas pollutant detection. Sensors. 2009;9(10):8158. Kanan SM, El-Kadri OM, Abu-Yousef IA, Kanan MC. Semiconducting metal oxide based sensors for selective gas pollutant detection. Sensors. 2009;9(10):8158.
[11]
Zurück zum Zitat Neri G, Bonavita A, Rizzo G, Galvagno S, Capone S, Siciliano P. A study of the catalytic activity and sensitivity to different alcohols of CeO2–Fe2O3 thin films. Sens Actuators B Chem. 2005;111:78. Neri G, Bonavita A, Rizzo G, Galvagno S, Capone S, Siciliano P. A study of the catalytic activity and sensitivity to different alcohols of CeO2–Fe2O3 thin films. Sens Actuators B Chem. 2005;111:78.
[12]
Zurück zum Zitat Liu C, Shan H, Liu L, Li S, Li H. High sensing properties of Ce-doped α-Fe2O3 nanotubes to acetone. Ceram Int. 2014;40(1):2395. Liu C, Shan H, Liu L, Li S, Li H. High sensing properties of Ce-doped α-Fe2O3 nanotubes to acetone. Ceram Int. 2014;40(1):2395.
[13]
Zurück zum Zitat Al-Kelesh H, Halim KA, Nasr M. Synthesis of heavy tungsten alloys via powder reduction technique. J Mater Res. 2016;31(19):2977. Al-Kelesh H, Halim KA, Nasr M. Synthesis of heavy tungsten alloys via powder reduction technique. J Mater Res. 2016;31(19):2977.
[14]
Zurück zum Zitat Kang KS, Kim CH, Cho WC, Bae KK, Woo SW, Park CS. Reduction characteristics of CuFe2O4 and Fe3O4 by methane; CuFe2O4 as an oxidant for two-step thermochemical methane reforming. Int J Hydrogen Energy. 2008;33(17):4560. Kang KS, Kim CH, Cho WC, Bae KK, Woo SW, Park CS. Reduction characteristics of CuFe2O4 and Fe3O4 by methane; CuFe2O4 as an oxidant for two-step thermochemical methane reforming. Int J Hydrogen Energy. 2008;33(17):4560.
[15]
Zurück zum Zitat El-khalek NAA, Naser MI, Yassin KE, Al-Kelesh H. Studying the reduction behavior of eastern desert iron after benefication using falcon concentrator. J Ore Dress. 2014;16(31):11. El-khalek NAA, Naser MI, Yassin KE, Al-Kelesh H. Studying the reduction behavior of eastern desert iron after benefication using falcon concentrator. J Ore Dress. 2014;16(31):11.
[16]
Zurück zum Zitat Halim KA. Isothermal reduction behavior of Fe2O3/MnO composite materials with solid carbon. Mater Sci Eng A. 2007;452:15. Halim KA. Isothermal reduction behavior of Fe2O3/MnO composite materials with solid carbon. Mater Sci Eng A. 2007;452:15.
[17]
Zurück zum Zitat Llusar M, Royo V, Badenes J, Tena M, Monrós G. Nanocomposite Fe2O3–SiO2 inclusion pigments from post-functionalized mesoporous silicas. J Eur Ceram Soc. 2009;29(16):3319. Llusar M, Royo V, Badenes J, Tena M, Monrós G. Nanocomposite Fe2O3–SiO2 inclusion pigments from post-functionalized mesoporous silicas. J Eur Ceram Soc. 2009;29(16):3319.
[18]
Zurück zum Zitat Mohapatra M, Anand S. Synthesis and applications of nano-structured iron oxides/hydroxides—a review. Int J Eng Sci Technol. 2010;2(8):127. Mohapatra M, Anand S. Synthesis and applications of nano-structured iron oxides/hydroxides—a review. Int J Eng Sci Technol. 2010;2(8):127.
[19]
Zurück zum Zitat Dharanipragada NA, Meledina M, Galvita VV, Poelman H, Turner S, Van Tendeloo G, Detavernier C, Marin GB. Deactivation study of Fe2O3–CeO2 during redox cycles for CO Production from CO2. Ind Eng Chem Res. 2016;55(20):5911. Dharanipragada NA, Meledina M, Galvita VV, Poelman H, Turner S, Van Tendeloo G, Detavernier C, Marin GB. Deactivation study of Fe2O3–CeO2 during redox cycles for CO Production from CO2. Ind Eng Chem Res. 2016;55(20):5911.
[20]
Zurück zum Zitat Turkdogan E, Vinters J, Vinters J. Gaseous reduction of iron oxides: part I. Reduction of hematite in hydrogen. Metall Mater Trans B. 1971;2(11):3175. Turkdogan E, Vinters J, Vinters J. Gaseous reduction of iron oxides: part I. Reduction of hematite in hydrogen. Metall Mater Trans B. 1971;2(11):3175.
[21]
Zurück zum Zitat Turkdogan E, Olsson R, Vinters J. Gaseous reduction of iron oxides: part II. Pore characteristics of iron reduced from hematite in hydrogen. Metall Mater Trans B. 1971;2(11):3189. Turkdogan E, Olsson R, Vinters J. Gaseous reduction of iron oxides: part II. Pore characteristics of iron reduced from hematite in hydrogen. Metall Mater Trans B. 1971;2(11):3189.
[22]
Zurück zum Zitat El-Geassy AA, Shehata KA, Ezz SY. Mechanism of iron-oxide reduction with hydrogen-carbonmonoxide mixtures. Trans Iron Steel Inst Jpn. 1977;17(11):629. El-Geassy AA, Shehata KA, Ezz SY. Mechanism of iron-oxide reduction with hydrogen-carbonmonoxide mixtures. Trans Iron Steel Inst Jpn. 1977;17(11):629.
[23]
Zurück zum Zitat El-Geassy A. Gaseous reduction of Fe2O3 compacts at 600 to 1050 °C. J Mater Sci. 1986;21(11):3889. El-Geassy A. Gaseous reduction of Fe2O3 compacts at 600 to 1050 °C. J Mater Sci. 1986;21(11):3889.
[24]
Zurück zum Zitat Gold R, Sandall W, Cheplick P, MacRae D. Plasma reduction of iron oxide with H and natural gas at 100 kW and 1 MW. Ironmak Steelmak. 1977;4(1):10. Gold R, Sandall W, Cheplick P, MacRae D. Plasma reduction of iron oxide with H and natural gas at 100 kW and 1 MW. Ironmak Steelmak. 1977;4(1):10.
[25]
Zurück zum Zitat Pan F, Zhang J, Chen HL, Su YH, Kuo CL, Su YH, Chen SH, Lin KJ, Hsieh PH, Hwang WS. Effects of rare earth metals on steel microstructures. Materials. 2016;9(6):417. Pan F, Zhang J, Chen HL, Su YH, Kuo CL, Su YH, Chen SH, Lin KJ, Hsieh PH, Hwang WS. Effects of rare earth metals on steel microstructures. Materials. 2016;9(6):417.
[26]
Zurück zum Zitat Maisang W, Phuruangrat A, Thongtem S, Thongtem T. Photoluminescence and photonic absorbance of Ce2(MoO4)3 nanocrystal synthesized by microwave–hydrothermal/solvothermal method. Rare Met. 2018;37(10):868. Maisang W, Phuruangrat A, Thongtem S, Thongtem T. Photoluminescence and photonic absorbance of Ce2(MoO4)3 nanocrystal synthesized by microwave–hydrothermal/solvothermal method. Rare Met. 2018;37(10):868.
[27]
Zurück zum Zitat El Rouby W, Farghali A, Hamdedein A. Microwave synthesis of pure and doped cerium (IV) oxide (CeO2) nanoparticles for methylene blue degradation. Water Sci Technol. 2016;74(10):2325. El Rouby W, Farghali A, Hamdedein A. Microwave synthesis of pure and doped cerium (IV) oxide (CeO2) nanoparticles for methylene blue degradation. Water Sci Technol. 2016;74(10):2325.
[28]
Zurück zum Zitat Farghali AA, El Rouby WM, Hamdedein A. Effect of hydrothermal conditions on microstructures of pure and doped CeO2 nanoparticles and their photo-catalytic activity: degradation mechanism and pathway of methylene blue dye. Res Chem Intermed. 2017;43(12):7171. Farghali AA, El Rouby WM, Hamdedein A. Effect of hydrothermal conditions on microstructures of pure and doped CeO2 nanoparticles and their photo-catalytic activity: degradation mechanism and pathway of methylene blue dye. Res Chem Intermed. 2017;43(12):7171.
[30]
Zurück zum Zitat Aboud AA, Al-Kelesh H, El Rouby WM, Farghali AA, Hamdedein A, Khedr MH. CO2 responses based on pure and doped CeO2 nano-pellets. J Mater Res Technol. 2018;7(1):14. Aboud AA, Al-Kelesh H, El Rouby WM, Farghali AA, Hamdedein A, Khedr MH. CO2 responses based on pure and doped CeO2 nano-pellets. J Mater Res Technol. 2018;7(1):14.
[31]
Zurück zum Zitat Cao S, Shi M, Wang H, Yu F, Weng X, Liu Y, Wu Z. A two-stage Ce/TiO2–Cu/CeO2 catalyst with separated catalytic functions for deep catalytic combustion of CH2Cl2. Chem Eng J. 2016;290:147. Cao S, Shi M, Wang H, Yu F, Weng X, Liu Y, Wu Z. A two-stage Ce/TiO2–Cu/CeO2 catalyst with separated catalytic functions for deep catalytic combustion of CH2Cl2. Chem Eng J. 2016;290:147.
[32]
Zurück zum Zitat Shi Z, Yang P, Tao F, Zhou R. New insight into the structure of CeO2–TiO2 mixed oxides and their excellent catalytic performances for 1,2-dichloroethane oxidation. Chem Eng J. 2016;295:99. Shi Z, Yang P, Tao F, Zhou R. New insight into the structure of CeO2–TiO2 mixed oxides and their excellent catalytic performances for 1,2-dichloroethane oxidation. Chem Eng J. 2016;295:99.
[33]
Zurück zum Zitat Aresta M, Dibenedetto A, Pastore C, Cuocci C, Aresta B, Cometa S, De Giglio E. Cerium (IV) oxide modification by inclusion of a hetero-atom: a strategy for producing efficient and robust nano-catalysts for methanol carboxylation. Catal Today. 2008;137(1):125. Aresta M, Dibenedetto A, Pastore C, Cuocci C, Aresta B, Cometa S, De Giglio E. Cerium (IV) oxide modification by inclusion of a hetero-atom: a strategy for producing efficient and robust nano-catalysts for methanol carboxylation. Catal Today. 2008;137(1):125.
[34]
Zurück zum Zitat Lin S, Su G, Zheng M, Ji D, Jia M, Liu Y. Synthesis of flower-like Co3O4–CeO2 composite oxide and its application to catalytic degradation of 1,2,4-trichlorobenzene. Appl Catal B. 2012;123:440. Lin S, Su G, Zheng M, Ji D, Jia M, Liu Y. Synthesis of flower-like Co3O4–CeO2 composite oxide and its application to catalytic degradation of 1,2,4-trichlorobenzene. Appl Catal B. 2012;123:440.
[35]
Zurück zum Zitat Wang W, Zhu Q, Dai Q, Wang X. Fe doped CeO2 nanosheets for catalytic oxidation of 1,2-dichloroethane: effect of preparation method. Chem Eng J. 2017;307:1037. Wang W, Zhu Q, Dai Q, Wang X. Fe doped CeO2 nanosheets for catalytic oxidation of 1,2-dichloroethane: effect of preparation method. Chem Eng J. 2017;307:1037.
[36]
Zurück zum Zitat Sahoo S, Mohapatra M, Pandey B, Verma H, Das R, Anand S. Preparation and characterization of α-Fe2O3–CeO2 composite. Mater Charact. 2009;60(5):425. Sahoo S, Mohapatra M, Pandey B, Verma H, Das R, Anand S. Preparation and characterization of α-Fe2O3–CeO2 composite. Mater Charact. 2009;60(5):425.
[37]
Zurück zum Zitat Brito PC, Santos DA, Duque JGS, Macêdo MA. Structural and magnetic study of Fe-doped CeO2. Physica B. 2010;405(7):1821. Brito PC, Santos DA, Duque JGS, Macêdo MA. Structural and magnetic study of Fe-doped CeO2. Physica B. 2010;405(7):1821.
[38]
Zurück zum Zitat Cardillo D, Konstantinov K, Devers T. The effects of cerium doping on the size, morphology, and optical properties of α-hematite nanoparticles for ultraviolet filtration. Mater Res Bull. 2013;48(11):4521. Cardillo D, Konstantinov K, Devers T. The effects of cerium doping on the size, morphology, and optical properties of α-hematite nanoparticles for ultraviolet filtration. Mater Res Bull. 2013;48(11):4521.
[39]
Zurück zum Zitat Janoš P, Kuráň P, Pilařová V, Trögl J, Šťastný M, Pelant O, Henych J, Bakardjieva S, Životský O, Kormunda M. Magnetically separable reactive sorbent based on the CeO2/γ-Fe2O3 composite and its utilization for rapid degradation of the organophosphate pesticide parathion methyl and certain nerve agents. Chem Eng J. 2015;262:747. Janoš P, Kuráň P, Pilařová V, Trögl J, Šťastný M, Pelant O, Henych J, Bakardjieva S, Životský O, Kormunda M. Magnetically separable reactive sorbent based on the CeO2/γ-Fe2O3 composite and its utilization for rapid degradation of the organophosphate pesticide parathion methyl and certain nerve agents. Chem Eng J. 2015;262:747.
[40]
Zurück zum Zitat Arena F, Gumina B, Lombardo AF, Espro C, Patti A, Spadaro L, Spiccia L. Nanostructured MnOx catalysts in the liquid phase selective oxidation of benzyl alcohol with oxygen: part I. Effects of Ce and Fe addition on structure and reactivity. Appl Catal B. 2015;162:260. Arena F, Gumina B, Lombardo AF, Espro C, Patti A, Spadaro L, Spiccia L. Nanostructured MnOx catalysts in the liquid phase selective oxidation of benzyl alcohol with oxygen: part I. Effects of Ce and Fe addition on structure and reactivity. Appl Catal B. 2015;162:260.
[41]
Zurück zum Zitat Gobara HM, Aboutaleb WA, Hashem KM, Hassan SA, Henein SA. A novel route for synthesis of α-Fe2O3–CeO2 nanocomposites for ethanol conversion. Mater Sci. 2017;52(1):550. Gobara HM, Aboutaleb WA, Hashem KM, Hassan SA, Henein SA. A novel route for synthesis of α-Fe2O3–CeO2 nanocomposites for ethanol conversion. Mater Sci. 2017;52(1):550.
[43]
Zurück zum Zitat Prabhukhot Prachi R, Wagh Mahesh M, Gangal Aneesh C. A review on solid state hydrogen storage material. Adv Energy Power. 2016;4(2):11. Prabhukhot Prachi R, Wagh Mahesh M, Gangal Aneesh C. A review on solid state hydrogen storage material. Adv Energy Power. 2016;4(2):11.
[44]
Zurück zum Zitat Lee DH, Cha KS, Lee YS, Kang KS, Park CS, Kim YH. Effects of CeO2 additive on redox characteristics of Fe-based mixed oxide mediums for storage and production of hydrogen. Int J Hydrogen Energy. 2009;34(3):1417. Lee DH, Cha KS, Lee YS, Kang KS, Park CS, Kim YH. Effects of CeO2 additive on redox characteristics of Fe-based mixed oxide mediums for storage and production of hydrogen. Int J Hydrogen Energy. 2009;34(3):1417.
[46]
Zurück zum Zitat Wang G, Yang Y, Han D, Li Y. Oxygen defective metal oxides for energy conversion and storage. Nano Today. 2017;13:23. Wang G, Yang Y, Han D, Li Y. Oxygen defective metal oxides for energy conversion and storage. Nano Today. 2017;13:23.
[47]
Zurück zum Zitat Gu Z, Li K, Qing S, Zhu X, Wei Y, Li Y, Wang H. Enhanced reducibility and redox stability of Fe2O3 in the presence of CeO2 nanoparticles. RSC Adv. 2014;4(88):47191. Gu Z, Li K, Qing S, Zhu X, Wei Y, Li Y, Wang H. Enhanced reducibility and redox stability of Fe2O3 in the presence of CeO2 nanoparticles. RSC Adv. 2014;4(88):47191.
[48]
Zurück zum Zitat Galvita VV, Poelman H, Bliznuk V, Detavernier C, Marin GB. CeO2-Modified Fe2O3 for CO2 utilization via chemical looping. Ind Eng Chem Res. 2013;52(25):8416. Galvita VV, Poelman H, Bliznuk V, Detavernier C, Marin GB. CeO2-Modified Fe2O3 for CO2 utilization via chemical looping. Ind Eng Chem Res. 2013;52(25):8416.
[49]
Zurück zum Zitat Li K, Haneda M, Gu Z, Wang H, Ozawa M. Modification of CeO2 on the redox property of Fe2O3. Mater Lett. 2013;93:129. Li K, Haneda M, Gu Z, Wang H, Ozawa M. Modification of CeO2 on the redox property of Fe2O3. Mater Lett. 2013;93:129.
[50]
Zurück zum Zitat Farghali AA, Sayed SG. Synthesis, characterisation and photo-catalytic activity of CeO2/Fe2O3 nano-composite. Int J Nanopart. 2015;8(2):171. Farghali AA, Sayed SG. Synthesis, characterisation and photo-catalytic activity of CeO2/Fe2O3 nano-composite. Int J Nanopart. 2015;8(2):171.
[51]
Zurück zum Zitat Kongzhai L, Hua W, Yonggang W, Mingchun L. Preparation and characterization of Ce1−xFexO2 complex oxides and its catalytic activity for methane selective oxidation. J Rare Earths. 2008;26(2):245. Kongzhai L, Hua W, Yonggang W, Mingchun L. Preparation and characterization of Ce1−xFexO2 complex oxides and its catalytic activity for methane selective oxidation. J Rare Earths. 2008;26(2):245.
[52]
Zurück zum Zitat Kurian M, Kunjachan C. Effect of lattice distortion on physical properties and surface morphology of nanoceria framework with incorporation of iron/zirconium. Nano-Struct Nano-Objects. 2015;1:15. Kurian M, Kunjachan C. Effect of lattice distortion on physical properties and surface morphology of nanoceria framework with incorporation of iron/zirconium. Nano-Struct Nano-Objects. 2015;1:15.
[53]
Zurück zum Zitat Sohn S, Kim D. Modification of Langmuir isotherm in solution systems—definition and utilization of concentration dependent factor. Chemosphere. 2005;58(1):115. Sohn S, Kim D. Modification of Langmuir isotherm in solution systems—definition and utilization of concentration dependent factor. Chemosphere. 2005;58(1):115.
[54]
Zurück zum Zitat Khedr MH. Isothermal reduction kinetics at 900–1100 °C of NiFe2O4 sintered at 1000–1200 °C. J Anal Appl Pyrol. 2005;73(1):123. Khedr MH. Isothermal reduction kinetics at 900–1100 °C of NiFe2O4 sintered at 1000–1200 °C. J Anal Appl Pyrol. 2005;73(1):123.
[55]
Zurück zum Zitat Szekely J, Evans JW, Sohn HY. Gas–Solid Reactions. New York: Academic Press; 1976. Szekely J, Evans JW, Sohn HY. Gas–Solid Reactions. New York: Academic Press; 1976.
[56]
Zurück zum Zitat Ma D, Lu Z, Tang Y, Li T, Tang Z, Yang Z. Effect of lattice strain on the oxygen vacancy formation and hydrogen adsorption at CeO2 (111) surface. Phys Lett A. 2014;378(34):2570. Ma D, Lu Z, Tang Y, Li T, Tang Z, Yang Z. Effect of lattice strain on the oxygen vacancy formation and hydrogen adsorption at CeO2 (111) surface. Phys Lett A. 2014;378(34):2570.
[57]
Zurück zum Zitat Liu F, Chen C, Guo H, Saghayezhian M, Wang G, Chen L, Chen W, Zhang J, Plummer E. Unusual Fe–H bonding associated with oxygen vacancies at the (001) surface of Fe3O4. Surf Sci. 2017;655:25. Liu F, Chen C, Guo H, Saghayezhian M, Wang G, Chen L, Chen W, Zhang J, Plummer E. Unusual Fe–H bonding associated with oxygen vacancies at the (001) surface of Fe3O4. Surf Sci. 2017;655:25.
[58]
Zurück zum Zitat Zhang C, Geng X, Li J, Luo Y, Lu P. Role of oxygen vacancy in tuning of optical, electrical and NO2 sensing properties of ZnO1−x coatings at room temperature. Sens Actuators B Chem. 2017;248:886. Zhang C, Geng X, Li J, Luo Y, Lu P. Role of oxygen vacancy in tuning of optical, electrical and NO2 sensing properties of ZnO1−x coatings at room temperature. Sens Actuators B Chem. 2017;248:886.
[59]
Zurück zum Zitat Tan X, Lan H, Xie H, Zhou G, Jiang Y. Role of surface oxygen species of mesoporous CeCu oxide catalyst in OVOCs catalytic combustion. J Environ Chem Eng. 2017;5(2):2068. Tan X, Lan H, Xie H, Zhou G, Jiang Y. Role of surface oxygen species of mesoporous CeCu oxide catalyst in OVOCs catalytic combustion. J Environ Chem Eng. 2017;5(2):2068.
[60]
Zurück zum Zitat Hai G, Huang J, Cao L, Jie Y, Li J, Wang X, Zhang G. Influence of oxygen deficiency on the synthesis of tungsten oxide and the photocatalytic activity for the removal of organic dye. J Alloys Compd. 2017;690:239. Hai G, Huang J, Cao L, Jie Y, Li J, Wang X, Zhang G. Influence of oxygen deficiency on the synthesis of tungsten oxide and the photocatalytic activity for the removal of organic dye. J Alloys Compd. 2017;690:239.
Metadaten
Titel
Preparation and characterization of (CeO2)x–(Fe2O3)1−x nanocomposites: reduction kinetics and hydrogen storage
verfasst von
Shimaa G. Sayed
Waleed M. A. El Rouby
Ahmed A. Farghali
Publikationsdatum
15.05.2019
Verlag
Nonferrous Metals Society of China
Erschienen in
Rare Metals / Ausgabe 3/2020
Print ISSN: 1001-0521
Elektronische ISSN: 1867-7185
DOI
https://doi.org/10.1007/s12598-019-01244-z

Weitere Artikel der Ausgabe 3/2020

Rare Metals 3/2020 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.