Skip to main content
Erschienen in: Journal of Materials Science 20/2017

10.07.2017 | Biomaterials

Preparation and characterization of poly(ε-caprolactone)/ZnO foams for tissue engineering applications

verfasst von: Aleksandra Bužarovska

Erschienen in: Journal of Materials Science | Ausgabe 20/2017

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Fabrication of polymer scaffolds via various preparation procedures generally leads to creation of different morphologies, microstructure and properties. In this work, porous nanocomposite scaffolds of poly(ε-caprolactone) filled with different quantities of ZnO nanoparticles (0.5–5 wt%) were prepared by thermally induced phase separation (TIPS), using freeze-extraction method for solvent removal. The aim of this research was to investigate the influence of the fabrication procedure and the ZnO loadings on the PCL thermal, morphological and bioactivity properties. The TIPS procedure was confirmed to induce significantly high degree of crystallinity (up to 81%) in all investigated scaffolds, besides the nucleation capacity of the nanofiller. The in vitro bioactivity and biodegradability were tested by immersing produced scaffolds in standard simulated body fluid (SBF) for different periods of time (15 and 30 days). Scanning electron microscopy, Fourier transform infrared spectroscopy and X-ray diffraction were used to assess the variations in scaffolds after their incubation in SBF. No bioactivity was identified for 15 days of immersion, while the mineralization process was confirmed in all investigated scaffolds for the incubated period of 30 days. Thermogravimetric analysis was used to quantify the mineralization properties, confirming best mineralization properties in scaffolds containing lower contents of ZnO nanofiller (0.5 and 1 wt%).

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Literatur
1.
Zurück zum Zitat Armentano I, Dottori M, Fortunati E, Mattioli S, Kenny JM (2010) Biodegradable polymer matrix nanocomposite for tissue engineering: a review. Polym Degrad Stab 95:2126–2146CrossRef Armentano I, Dottori M, Fortunati E, Mattioli S, Kenny JM (2010) Biodegradable polymer matrix nanocomposite for tissue engineering: a review. Polym Degrad Stab 95:2126–2146CrossRef
2.
Zurück zum Zitat Armentano I, Bitinis N, Fortunati E, Mattioli S, Rescignano N, Verdejo R, Lopez-Mmanchado MA, Kenny JM (2013) Multifunctional nanostructured PLA materials for packaging and tissue engineering. Prog Polym Sci 38:1720–1747CrossRef Armentano I, Bitinis N, Fortunati E, Mattioli S, Rescignano N, Verdejo R, Lopez-Mmanchado MA, Kenny JM (2013) Multifunctional nanostructured PLA materials for packaging and tissue engineering. Prog Polym Sci 38:1720–1747CrossRef
3.
Zurück zum Zitat Ruiz-Hitzky E, Fernandes FM (2013) Progress in bionanocomposites: from green plastics to biomedical applications. Prog Polym Sci 38:1389–1772CrossRef Ruiz-Hitzky E, Fernandes FM (2013) Progress in bionanocomposites: from green plastics to biomedical applications. Prog Polym Sci 38:1389–1772CrossRef
4.
Zurück zum Zitat Ali SAM, Zhong SP, Doherty PJ, Williams DF (1993) Mechanisms of polymer degradation in implantable devices. I. Poly(caprolactone). Biomaterials 14:648–656CrossRef Ali SAM, Zhong SP, Doherty PJ, Williams DF (1993) Mechanisms of polymer degradation in implantable devices. I. Poly(caprolactone). Biomaterials 14:648–656CrossRef
5.
Zurück zum Zitat Diba M, Kharaziha M, Fathi MH, Gholipourmlekabadi M, Samadikuchaksaraei A (2012) Preparation and characterization of polycaprolactone/forsterite nanocomposite porous scaffolds designed for bone tissue engineering. Compos Sci Technol 72:716–723CrossRef Diba M, Kharaziha M, Fathi MH, Gholipourmlekabadi M, Samadikuchaksaraei A (2012) Preparation and characterization of polycaprolactone/forsterite nanocomposite porous scaffolds designed for bone tissue engineering. Compos Sci Technol 72:716–723CrossRef
6.
Zurück zum Zitat Li WJ, Tuli R, Okafor C, Derfoul A, Danielson KG, Hall DJ, Tuan RS (2005) A three-dimensional nanofibrous scaffold for cartilage tissue engineering using human mesenchymal stem cells. Biomaterials 26:599–609CrossRef Li WJ, Tuli R, Okafor C, Derfoul A, Danielson KG, Hall DJ, Tuan RS (2005) A three-dimensional nanofibrous scaffold for cartilage tissue engineering using human mesenchymal stem cells. Biomaterials 26:599–609CrossRef
7.
Zurück zum Zitat Ulery BD, Nair LS, Laurencin CT (2011) Biomedical application of biodegradable polymers. J Polym Sci B Polym Phys 49:832–864CrossRef Ulery BD, Nair LS, Laurencin CT (2011) Biomedical application of biodegradable polymers. J Polym Sci B Polym Phys 49:832–864CrossRef
8.
Zurück zum Zitat Seretouidi G, Bikiaris D, Panayiotou C (2002) Synthesis, characterization and biodegradability of poly(ethylene succinate)/poly(ε-caprolactone) block copolymers. Polymer 43:5405–5415CrossRef Seretouidi G, Bikiaris D, Panayiotou C (2002) Synthesis, characterization and biodegradability of poly(ethylene succinate)/poly(ε-caprolactone) block copolymers. Polymer 43:5405–5415CrossRef
9.
Zurück zum Zitat Ródenas-Rochina J, Ribelles JL, Lebourg M (2013) Comparative study of PCL-HAp and PCL-bioglass composite scaffolds for bone tissue engineering. J Mater Sci Med 24:1293–1308CrossRef Ródenas-Rochina J, Ribelles JL, Lebourg M (2013) Comparative study of PCL-HAp and PCL-bioglass composite scaffolds for bone tissue engineering. J Mater Sci Med 24:1293–1308CrossRef
10.
Zurück zum Zitat Cannillo V, Chiellini F, Fabbri P (2010) Production of Bioglass® 45S5—polycaprolactone composite scaffolds via salt-leaching. Compos Struct 92:1823–1832CrossRef Cannillo V, Chiellini F, Fabbri P (2010) Production of Bioglass® 45S5—polycaprolactone composite scaffolds via salt-leaching. Compos Struct 92:1823–1832CrossRef
11.
Zurück zum Zitat Chuenjitkuntaworn B, Inrung W, Damrongsri D, Mekaapiruk K, Supaphol P, Pavasant P (2010) Polycaprolactone/hydroxyapatite composite scaffolds: production, characterization, and in vitro and in vivo biological responses of human primary cells. J Biomed Mater Res A 94:241–251CrossRef Chuenjitkuntaworn B, Inrung W, Damrongsri D, Mekaapiruk K, Supaphol P, Pavasant P (2010) Polycaprolactone/hydroxyapatite composite scaffolds: production, characterization, and in vitro and in vivo biological responses of human primary cells. J Biomed Mater Res A 94:241–251CrossRef
12.
Zurück zum Zitat Msdhsvan RV, Rosemary MJ, Nadkumar MA, Krishnan KV, Krishnan LK (2011) Silver nanoparticle impregnated poly(ε-caprolactone) scaffolds: optimization of antimicrobial and noncytotoxic concentrations. Tissue Eng Part B 17:439–449CrossRef Msdhsvan RV, Rosemary MJ, Nadkumar MA, Krishnan KV, Krishnan LK (2011) Silver nanoparticle impregnated poly(ε-caprolactone) scaffolds: optimization of antimicrobial and noncytotoxic concentrations. Tissue Eng Part B 17:439–449CrossRef
13.
Zurück zum Zitat Crowder SW, Liang Y, Rath R, Park AM, Maltais S, Pintauro PN, Hofmeister W, Lim CC, Wang X, Sung HJ (2013) Poly(ε-caprolactone)-carbon nanotube composite scaffolds for enhanced cardiac differentiation of human mesenchymal stem cells. Nanomedicine 8:1763–1776CrossRef Crowder SW, Liang Y, Rath R, Park AM, Maltais S, Pintauro PN, Hofmeister W, Lim CC, Wang X, Sung HJ (2013) Poly(ε-caprolactone)-carbon nanotube composite scaffolds for enhanced cardiac differentiation of human mesenchymal stem cells. Nanomedicine 8:1763–1776CrossRef
14.
Zurück zum Zitat Goreham RV, Mierczynska A, Smith LE, Sedev R, Vasilev K (2013) Small surface nanotopography encourages fibroblast and osteoblast cell adhesion. RSC Adv 3:10309–10317CrossRef Goreham RV, Mierczynska A, Smith LE, Sedev R, Vasilev K (2013) Small surface nanotopography encourages fibroblast and osteoblast cell adhesion. RSC Adv 3:10309–10317CrossRef
15.
Zurück zum Zitat Zhang Y, Nayak TR, Hong H, Cai W (2013) Biomedical applications of zinc oxide nanomaterials. Curr Mol Med 13:1633–1645CrossRef Zhang Y, Nayak TR, Hong H, Cai W (2013) Biomedical applications of zinc oxide nanomaterials. Curr Mol Med 13:1633–1645CrossRef
16.
Zurück zum Zitat Treccani L, Klein TY, Meder F, Pardun K, Rezwan K (2013) Functionalized ceramics for biomedical and environmental applications. Acta Biomater 9:7115–7150CrossRef Treccani L, Klein TY, Meder F, Pardun K, Rezwan K (2013) Functionalized ceramics for biomedical and environmental applications. Acta Biomater 9:7115–7150CrossRef
17.
Zurück zum Zitat Augustine R, Malik HN, Singhal DK, Mukherjee A, Malakar D, Kalarikkal N, Thomas S (2014) Electrosun polycaprolactone/ZnO nanocomposite membranes as biomaterial with antibacterial and cell adhesion properties. J Polym Res 21:347–364CrossRef Augustine R, Malik HN, Singhal DK, Mukherjee A, Malakar D, Kalarikkal N, Thomas S (2014) Electrosun polycaprolactone/ZnO nanocomposite membranes as biomaterial with antibacterial and cell adhesion properties. J Polym Res 21:347–364CrossRef
18.
Zurück zum Zitat Augustine R, Dominic EA, Reju I, Kaimal B, Kalarikkal N, Thomas S (2014) Investigation of angiogenesis and its mechanism using zinc oxide nanoparticle-loaded electrospun tissue engineering scaffolds. RSC Adv 4:51528–51536CrossRef Augustine R, Dominic EA, Reju I, Kaimal B, Kalarikkal N, Thomas S (2014) Investigation of angiogenesis and its mechanism using zinc oxide nanoparticle-loaded electrospun tissue engineering scaffolds. RSC Adv 4:51528–51536CrossRef
19.
Zurück zum Zitat Münchow EA, Albuquerque MTP, Zero B, Kamocki K, Piva E, Gregory RL, Bottino MC (2015) Development and characterization of novel ZnO-loaded electrospun membranes for periodontal regeneration. Dent Mater 31:1038–1051CrossRef Münchow EA, Albuquerque MTP, Zero B, Kamocki K, Piva E, Gregory RL, Bottino MC (2015) Development and characterization of novel ZnO-loaded electrospun membranes for periodontal regeneration. Dent Mater 31:1038–1051CrossRef
20.
Zurück zum Zitat Kim J, Mousa HM, Park CH, Kim CS (2017) Enhanced corrosion resistance and biocompatibility of AZ31 Mg alloy using PCL/ZnO NPs via electospinning. Appl Surf Sci 396:249–258CrossRef Kim J, Mousa HM, Park CH, Kim CS (2017) Enhanced corrosion resistance and biocompatibility of AZ31 Mg alloy using PCL/ZnO NPs via electospinning. Appl Surf Sci 396:249–258CrossRef
21.
Zurück zum Zitat Abedalwafa M, Wang F, Wang L, Li C (2013) Biodegradable poly-epsilon-caprolactone (PCL) for tissue engineering applications: a review. Rev Adv Mater Sci 34:123–140 Abedalwafa M, Wang F, Wang L, Li C (2013) Biodegradable poly-epsilon-caprolactone (PCL) for tissue engineering applications: a review. Rev Adv Mater Sci 34:123–140
23.
Zurück zum Zitat Gualandi C, Govoni M, Foroni L, Valente S, Bianchi M, Giordano E, Pasquinelli G, Biscarini F, Focarete ML (2012) Ethanol disinfection affects physical properties and cell response of electrospun poly(l-lactic acid) scaffolds. Eur Polym J 48:2008–2018CrossRef Gualandi C, Govoni M, Foroni L, Valente S, Bianchi M, Giordano E, Pasquinelli G, Biscarini F, Focarete ML (2012) Ethanol disinfection affects physical properties and cell response of electrospun poly(l-lactic acid) scaffolds. Eur Polym J 48:2008–2018CrossRef
24.
Zurück zum Zitat Ho MH, Kuo PY, Hsieh HJ, Hsien TY, Hou LT, Lai JY, Wang DM (2004) Preparation of porous scaffolds by using freeze-extraction and freeze-gelation methods. Biomaterials 25:129–138CrossRef Ho MH, Kuo PY, Hsieh HJ, Hsien TY, Hou LT, Lai JY, Wang DM (2004) Preparation of porous scaffolds by using freeze-extraction and freeze-gelation methods. Biomaterials 25:129–138CrossRef
25.
Zurück zum Zitat Kokubo T, Kushitani H, Sakka S, Kitsugi T, Yamamuro T (1990) Solutions able to reproduce in vivo surface-structure changes in bioactive glass–ceramic A–W. J Biomed Mater Res A 24:721–734CrossRef Kokubo T, Kushitani H, Sakka S, Kitsugi T, Yamamuro T (1990) Solutions able to reproduce in vivo surface-structure changes in bioactive glass–ceramic A–W. J Biomed Mater Res A 24:721–734CrossRef
26.
Zurück zum Zitat Kothapalli CR, Shaw MT, Wei M (2005) Biodegradable HA-PLA 3D porous scaffolds: effect of nano-sized filler content on scaffolds properties. Acta Biomater 1:653–662CrossRef Kothapalli CR, Shaw MT, Wei M (2005) Biodegradable HA-PLA 3D porous scaffolds: effect of nano-sized filler content on scaffolds properties. Acta Biomater 1:653–662CrossRef
27.
Zurück zum Zitat Crescenzi V, Mancini G, Calzolari G, Borri C (1972) Thermodynamics of fusion of poly-β-propiolactone and poly-ε-caprolactone. Comparative analysis of the melting of aliphatic polylactone and polyester chains. Eur Polym J 8:449–463CrossRef Crescenzi V, Mancini G, Calzolari G, Borri C (1972) Thermodynamics of fusion of poly-β-propiolactone and poly-ε-caprolactone. Comparative analysis of the melting of aliphatic polylactone and polyester chains. Eur Polym J 8:449–463CrossRef
28.
Zurück zum Zitat Peng H, Han Y, Liu T, Tjiu WC, He C (2010) Morphology and thermal degradation behaviour of highly exfoliated CoAl-layered double hydroxide/polycaprolactone nanocomposites prepared by simple solution intercalation. Thermochim Acta 502:1–7CrossRef Peng H, Han Y, Liu T, Tjiu WC, He C (2010) Morphology and thermal degradation behaviour of highly exfoliated CoAl-layered double hydroxide/polycaprolactone nanocomposites prepared by simple solution intercalation. Thermochim Acta 502:1–7CrossRef
29.
Zurück zum Zitat Liu JY, Reni L, Wei Q, Wu JL, Liu S, Wang YJ, Li GY (2011) Fabrication and characterization of caprolactone/calcium sulfate whisker composites. Express Polym Lett 5:742–752CrossRef Liu JY, Reni L, Wei Q, Wu JL, Liu S, Wang YJ, Li GY (2011) Fabrication and characterization of caprolactone/calcium sulfate whisker composites. Express Polym Lett 5:742–752CrossRef
30.
Zurück zum Zitat Augustine R, Nandakumar K, Thomas S (2016) Effect of zinc oxide nanoparticles on the in vitro degradation of electrospun polycaprolactone membranes in simulated body fluid. Int J Polym Mater 65:28–37CrossRef Augustine R, Nandakumar K, Thomas S (2016) Effect of zinc oxide nanoparticles on the in vitro degradation of electrospun polycaprolactone membranes in simulated body fluid. Int J Polym Mater 65:28–37CrossRef
31.
Zurück zum Zitat Mandelkern L (2004) Crystallization of polymers: kinetics and mechanisms, vol 2, 2nd edn. Cambridge University Press, CambridgeCrossRef Mandelkern L (2004) Crystallization of polymers: kinetics and mechanisms, vol 2, 2nd edn. Cambridge University Press, CambridgeCrossRef
32.
Zurück zum Zitat Coleman MM, Zarian J (1979) Fourier-transform infrared studies of polymer blends. II. Poly(a-caprolactone)-poly(vinylchloride) system. Polym Sci Polym Phys Ed 17:837–850CrossRef Coleman MM, Zarian J (1979) Fourier-transform infrared studies of polymer blends. II. Poly(a-caprolactone)-poly(vinylchloride) system. Polym Sci Polym Phys Ed 17:837–850CrossRef
33.
Zurück zum Zitat Elzein T, Nasser-Eddine M, Delaite C, Bistac S, Dumas P (2004) FTIR study of polycaprolactone chain organization at interfaces. J Colloid Interface Sci 273:381–387CrossRef Elzein T, Nasser-Eddine M, Delaite C, Bistac S, Dumas P (2004) FTIR study of polycaprolactone chain organization at interfaces. J Colloid Interface Sci 273:381–387CrossRef
34.
Zurück zum Zitat He Y, Inoue Y (2000) Novel FTIR method for determining the crystallinity of poly(ε-caprolactone). Polym Int 49:623–626CrossRef He Y, Inoue Y (2000) Novel FTIR method for determining the crystallinity of poly(ε-caprolactone). Polym Int 49:623–626CrossRef
35.
Zurück zum Zitat Chen EC, Wu TM (2007) Isothermal crystallization kinetics and thermal behavior of poly(-caprolactone)/multi-walled carbon nanotube composites. Polym Degrad Stab 92:1009–1015CrossRef Chen EC, Wu TM (2007) Isothermal crystallization kinetics and thermal behavior of poly(-caprolactone)/multi-walled carbon nanotube composites. Polym Degrad Stab 92:1009–1015CrossRef
36.
Zurück zum Zitat Chen C, Yu B, Liu P, Liu JF, Wang L (2011) Investigation of nano-sized ZnO particles fabricated by various synthesis routes. J Ceram Process Res 12:420–425 Chen C, Yu B, Liu P, Liu JF, Wang L (2011) Investigation of nano-sized ZnO particles fabricated by various synthesis routes. J Ceram Process Res 12:420–425
37.
Zurück zum Zitat Hu X, Shen H, Yang F, Bei J, Wang S (2008) Preparation and cell affinity of microtubular oriented-structured PLGA(70/30) blood vessel scaffold. Biomaterials 29:3128–3136CrossRef Hu X, Shen H, Yang F, Bei J, Wang S (2008) Preparation and cell affinity of microtubular oriented-structured PLGA(70/30) blood vessel scaffold. Biomaterials 29:3128–3136CrossRef
38.
Zurück zum Zitat Yang F, Qu X, Cui W, Bei J, YuF LuS, Wang S (2006) Manufacturing and morphology structure of polylactide-type microtubules orientation-structured scaffolds. Biomaterials 27:4923–4933CrossRef Yang F, Qu X, Cui W, Bei J, YuF LuS, Wang S (2006) Manufacturing and morphology structure of polylactide-type microtubules orientation-structured scaffolds. Biomaterials 27:4923–4933CrossRef
39.
Zurück zum Zitat Ma PX, Zhang R (2001) Microtubular architecture of biodegradable polymer scaffolds. J Biomed Mater Res 56:469–477CrossRef Ma PX, Zhang R (2001) Microtubular architecture of biodegradable polymer scaffolds. J Biomed Mater Res 56:469–477CrossRef
40.
Zurück zum Zitat Buzarovska A, Gualandi C, Parrilli A, Scandola M (2015) Effect of TiO2 nanoparticle loading on Poly(l-lactic acid) porous scaffolds fabricated by TIPS. Compos Part B 81:189–195CrossRef Buzarovska A, Gualandi C, Parrilli A, Scandola M (2015) Effect of TiO2 nanoparticle loading on Poly(l-lactic acid) porous scaffolds fabricated by TIPS. Compos Part B 81:189–195CrossRef
41.
Zurück zum Zitat Bracci B, Panzavolta S, Bigi A (2013) A new simplified calcifying solutions to synthesize calcium phosphate coatings. Surf Coat Technol 232:13–21CrossRef Bracci B, Panzavolta S, Bigi A (2013) A new simplified calcifying solutions to synthesize calcium phosphate coatings. Surf Coat Technol 232:13–21CrossRef
42.
Zurück zum Zitat Powder Diffraction File n. 9-432, International Center for Diffraction Data (ICDD), Newtown Square, PA USA Powder Diffraction File n. 9-432, International Center for Diffraction Data (ICDD), Newtown Square, PA USA
43.
Zurück zum Zitat Berzina-Cimdina L, Borodajenko N (2012) Research of calcium phosphates using Fourier infrared spectroscopy. In: Theophanidis T (ed) Infrared spectroscopy—materials science, engineering and technology. InTech, pp 123–148 Berzina-Cimdina L, Borodajenko N (2012) Research of calcium phosphates using Fourier infrared spectroscopy. In: Theophanidis T (ed) Infrared spectroscopy—materials science, engineering and technology. InTech, pp 123–148
44.
Zurück zum Zitat Chang HM, Prasannan A, Tsai HC, Jhu JJ (2014) Ex vivo evaluation of biodegradable poly(e-caprolactone) films in digestive fluids. Appl Surf Sci 313:828–833CrossRef Chang HM, Prasannan A, Tsai HC, Jhu JJ (2014) Ex vivo evaluation of biodegradable poly(e-caprolactone) films in digestive fluids. Appl Surf Sci 313:828–833CrossRef
45.
Zurück zum Zitat Wei J, Chen QZ, Stevens MM, Roether JA, Boccaccini AR (2008) Biocompatibility and bioactivity of PDLLA/TiO2 and PDLLA/TiO2/Bioglass nanocomposites. Mater Sci Eng 28:1–10CrossRef Wei J, Chen QZ, Stevens MM, Roether JA, Boccaccini AR (2008) Biocompatibility and bioactivity of PDLLA/TiO2 and PDLLA/TiO2/Bioglass nanocomposites. Mater Sci Eng 28:1–10CrossRef
Metadaten
Titel
Preparation and characterization of poly(ε-caprolactone)/ZnO foams for tissue engineering applications
verfasst von
Aleksandra Bužarovska
Publikationsdatum
10.07.2017
Verlag
Springer US
Erschienen in
Journal of Materials Science / Ausgabe 20/2017
Print ISSN: 0022-2461
Elektronische ISSN: 1573-4803
DOI
https://doi.org/10.1007/s10853-017-1342-9

Weitere Artikel der Ausgabe 20/2017

Journal of Materials Science 20/2017 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.