Skip to main content
Erschienen in: Journal of Materials Science 17/2021

23.02.2021 | Energy materials

Preparation and electrochemical properties of ionic-liquid-modified Na3SbS4 membrane composite electrolytes

verfasst von: Ziqi Zhang, Haonan Cao, Long Zhang

Erschienen in: Journal of Materials Science | Ausgabe 17/2021

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Sulfide-based Na-ion solid electrolytes with high ionic conductivity are one of the most promising solid electrolytes for solid-state Na batteries. However, its poor chemical/electrochemical stability against Na metal leads to deterioration of interface. In addition, it is important to explore how to prepare sulfide-based composite membranes via solution method. Herein, Na3SbS4 is deposited on glassfiber framework via aqueous solution and further incorporated with trace of ionic liquid (IL). The Na3SbS4 composite pellets are well shaped avoiding the pressing process. The IL not only improves the Na3SbS4-Na interfacial stability, but also fills the pores between the framework and Na3SbS4 and thereby suppressing the dendrite formation. The Na plating/stripping tests on symmetric cells show polarization voltages lower than 0.1 V and stable cycling for more than 400 cycles under a current density of 0.1 mA cm−2 at room temperature. The cycling performance of the FeS2 half-cells with the optimized electrolyte tested at 60 °C is superior to that with organic liquid electrolyte.

Graphical abstract

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Chayambuka K, Mulder G, Danilov DL (2020) From Li-ion batteries toward Na-ion chemistries: challenges and opportunities. Adv Energy Mater 10:2001310 Chayambuka K, Mulder G, Danilov DL (2020) From Li-ion batteries toward Na-ion chemistries: challenges and opportunities. Adv Energy Mater 10:2001310
3.
Zurück zum Zitat Jia M, Zhang L (2020) Recent development on sulfide solid electrolytes for solid-state sodium batteries. Energy Storage Sci Technol 9:1266–1283 Jia M, Zhang L (2020) Recent development on sulfide solid electrolytes for solid-state sodium batteries. Energy Storage Sci Technol 9:1266–1283
4.
Zurück zum Zitat Zhao Q, Stalin S, Archer LA (2020) Designing solid-state electrolytes for safe, energy-dense batteries. Nat Rev Mater 5:229–252 Zhao Q, Stalin S, Archer LA (2020) Designing solid-state electrolytes for safe, energy-dense batteries. Nat Rev Mater 5:229–252
5.
Zurück zum Zitat Vaalma C, Buchholz D, Weil M (2018) A cost and resource analysis of sodium-ion batteries. Nat Rev Mater 3:1–11 Vaalma C, Buchholz D, Weil M (2018) A cost and resource analysis of sodium-ion batteries. Nat Rev Mater 3:1–11
6.
Zurück zum Zitat Zhou C, bag S, Thangadurai V, (2018) Engineering materials for progressive all-solid-state Na batteries. ACS Energy Lett 3:2181–2198 Zhou C, bag S, Thangadurai V, (2018) Engineering materials for progressive all-solid-state Na batteries. ACS Energy Lett 3:2181–2198
7.
Zurück zum Zitat Zhang L, Zhang D, Yang K (2016) Vacancy-contained tetragonal Na3SbS4 superionic conductor. Adv Sci 3:1600089 Zhang L, Zhang D, Yang K (2016) Vacancy-contained tetragonal Na3SbS4 superionic conductor. Adv Sci 3:1600089
8.
Zurück zum Zitat Chen XZ, He WJ, Ding LX, Wang SQ, Wang HH (2019) Enhancing interfacial contact in all solid state batteries with a cathode-supported solid electrolyte membrane framework. Energy Environ Sci 12:938–944 Chen XZ, He WJ, Ding LX, Wang SQ, Wang HH (2019) Enhancing interfacial contact in all solid state batteries with a cathode-supported solid electrolyte membrane framework. Energy Environ Sci 12:938–944
9.
Zurück zum Zitat Han F, Westover AS, Yue J (2019) High electronic conductivity as the origin of lithium dendrite formation within solid electrolytes. Nat Energy 4:187–196 Han F, Westover AS, Yue J (2019) High electronic conductivity as the origin of lithium dendrite formation within solid electrolytes. Nat Energy 4:187–196
10.
Zurück zum Zitat Hayashi A, Masuzawa N, Yubuchi S (2019) A sodium-ion sulfide solid electrolyte with unprecedented conductivity at room temperature. Nat Commun 10:5266 Hayashi A, Masuzawa N, Yubuchi S (2019) A sodium-ion sulfide solid electrolyte with unprecedented conductivity at room temperature. Nat Commun 10:5266
11.
Zurück zum Zitat Zhu YZ, Mo YF (2020) Materials design principles for air-stable lithium/sodium solid electrolytes. Angew Chem Int Ed 59:17472–17476 Zhu YZ, Mo YF (2020) Materials design principles for air-stable lithium/sodium solid electrolytes. Angew Chem Int Ed 59:17472–17476
12.
Zurück zum Zitat Zhao Y, Adair KR, Sun X (2018) Recent developments and insights into the understanding of Na metal anodes for Na-metal batteries. Energy Environ Sci 11:2673–2695 Zhao Y, Adair KR, Sun X (2018) Recent developments and insights into the understanding of Na metal anodes for Na-metal batteries. Energy Environ Sci 11:2673–2695
13.
Zurück zum Zitat Xiao Y, Wang Y, Ceder G (2019) Understanding interface stability in solid-state batteries. Nat Rev Mater 5:105–126 Xiao Y, Wang Y, Ceder G (2019) Understanding interface stability in solid-state batteries. Nat Rev Mater 5:105–126
14.
Zurück zum Zitat Hu P, Zhang Y, Chi X (2019) Stabilizing the interface between sodium metal anode and sulfide-based solid-state electrolyte with an electron-blocking interlayer. ACS Appl Mater Interfaces 11:9672–9678 Hu P, Zhang Y, Chi X (2019) Stabilizing the interface between sodium metal anode and sulfide-based solid-state electrolyte with an electron-blocking interlayer. ACS Appl Mater Interfaces 11:9672–9678
15.
Zurück zum Zitat Tian Y, Sun Y, Hannah DC (2019) Reactivity-guided interface design in Na metal solid-state batteries. Joule 3:1037–1050 Tian Y, Sun Y, Hannah DC (2019) Reactivity-guided interface design in Na metal solid-state batteries. Joule 3:1037–1050
16.
Zurück zum Zitat Lu Y, Cai YC, Zhang Q (2019) A compatible anode/succinonitrile-based electrolyte interface in all-solid-state Na-CO2 batteries. Chem Sci 10:4306–4312 Lu Y, Cai YC, Zhang Q (2019) A compatible anode/succinonitrile-based electrolyte interface in all-solid-state Na-CO2 batteries. Chem Sci 10:4306–4312
17.
Zurück zum Zitat Zhang Z, Zhang L, Yan X (2019) All-in-one improvement toward Li6PS5Br-based solid electrolytes triggered by compositional tune. J Power Sources 410:162–170 Zhang Z, Zhang L, Yan X (2019) All-in-one improvement toward Li6PS5Br-based solid electrolytes triggered by compositional tune. J Power Sources 410:162–170
18.
Zurück zum Zitat Tu Z, Choudhury S, Zachman MJ (2018) Fast ion transport at solid–solid interfaces in hybrid battery anodes. Nat Energy 3:310–316 Tu Z, Choudhury S, Zachman MJ (2018) Fast ion transport at solid–solid interfaces in hybrid battery anodes. Nat Energy 3:310–316
19.
Zurück zum Zitat Kato Y, Hori S, Saito T (2016) High-power all-solid-state batteries using sulfide superionic conductors. Nat Energy 1:16030 Kato Y, Hori S, Saito T (2016) High-power all-solid-state batteries using sulfide superionic conductors. Nat Energy 1:16030
20.
Zurück zum Zitat Lin Z, Liu Z, Fu W (2013) Lithium polysulfidophosphates: a family of lithium-conducting sulfur-rich compounds for lithium-sulfur batteries. Angew Chem Int Ed 52:7460–7463 Lin Z, Liu Z, Fu W (2013) Lithium polysulfidophosphates: a family of lithium-conducting sulfur-rich compounds for lithium-sulfur batteries. Angew Chem Int Ed 52:7460–7463
21.
Zurück zum Zitat Lim H-D, Lim H-K, Xing X (2018) Solid electrolyte layers by solution deposition. Adv Mater Interfaces 5:1701328 Lim H-D, Lim H-K, Xing X (2018) Solid electrolyte layers by solution deposition. Adv Mater Interfaces 5:1701328
22.
Zurück zum Zitat Whiteley JM, Zhang W, Lee S-H (2015) Ultra-thin solid-state Li-ion electrolyte membrane facilitated by a self-healing polymer matrix. Adv Mater 27:6922–6927 Whiteley JM, Zhang W, Lee S-H (2015) Ultra-thin solid-state Li-ion electrolyte membrane facilitated by a self-healing polymer matrix. Adv Mater 27:6922–6927
23.
Zurück zum Zitat Wang Z, Zhang P, Jia Y, Wang Z, Song J, Yan X, Zhang L (2021) Dimethyl carbonate adsorption enabling enhanced overall electrochemical properties for solid composite electrolyte. J Alloys Compd 853:157340 Wang Z, Zhang P, Jia Y, Wang Z, Song J, Yan X, Zhang L (2021) Dimethyl carbonate adsorption enabling enhanced overall electrochemical properties for solid composite electrolyte. J Alloys Compd 853:157340
24.
Zurück zum Zitat Nam YJ, Cho SJ, Oh DY (2015) Bendable and thin sulfide solid electrolyte film: a new electrolyte opportunity for free-standing and stackable high-energy all-solid-state lithium-ion batteries. Nano Lett 15:3317–3323 Nam YJ, Cho SJ, Oh DY (2015) Bendable and thin sulfide solid electrolyte film: a new electrolyte opportunity for free-standing and stackable high-energy all-solid-state lithium-ion batteries. Nano Lett 15:3317–3323
25.
Zurück zum Zitat Xu R, Yue J, Liu S (2019) Cathode-supported all-solid-state lithium–sulfur batteries with high cell-level energy density. ACS Energy Lett 4:1073–1079 Xu R, Yue J, Liu S (2019) Cathode-supported all-solid-state lithium–sulfur batteries with high cell-level energy density. ACS Energy Lett 4:1073–1079
26.
Zurück zum Zitat Yang H, Hwang J, Wang Y (2019) N-ethyl-N-propylpyrrolidinium bis(fluorosulfonyl)amide ionic liquid electrolytes for sodium secondary batteries: effects of Na ion concentration. J Phys Chem C 123:22018–22026 Yang H, Hwang J, Wang Y (2019) N-ethyl-N-propylpyrrolidinium bis(fluorosulfonyl)amide ionic liquid electrolytes for sodium secondary batteries: effects of Na ion concentration. J Phys Chem C 123:22018–22026
27.
Zurück zum Zitat Forsyth M, Porcarelli L, Wang X (2019) Innovative electrolytes based on ionic liquids and polymers for next-generation solid-state batteries. Acc Chem Res 52:686–694 Forsyth M, Porcarelli L, Wang X (2019) Innovative electrolytes based on ionic liquids and polymers for next-generation solid-state batteries. Acc Chem Res 52:686–694
28.
Zurück zum Zitat An T, Jia H, Peng L, Xie J (2020) Material and interfacial modification toward a stable room-temperature solid-state Na–S battery. ACS Appl Mater Interfaces 12:20563–20569 An T, Jia H, Peng L, Xie J (2020) Material and interfacial modification toward a stable room-temperature solid-state Na–S battery. ACS Appl Mater Interfaces 12:20563–20569
29.
Zurück zum Zitat Zhang Z, Zhang L, Liu Y (2018) Interface-engineered Li7La3Zr2O12-based garnet solid electrolytes with suppressed Li-dendrite formation and enhanced electrochemical performance. Chemsuschem 11:3774–3782 Zhang Z, Zhang L, Liu Y (2018) Interface-engineered Li7La3Zr2O12-based garnet solid electrolytes with suppressed Li-dendrite formation and enhanced electrochemical performance. Chemsuschem 11:3774–3782
30.
Zurück zum Zitat Zheng B, Zhu J, Wang H, Feng M, Umeshbabu E, Li Y, Wu Q, Yang Y (2018) Stabilizing Li10SnP2S12/Li interface via an in situ formed solid electrolyte interphase layer. ACS Appl Mater Interfaces 10:52473–52482 Zheng B, Zhu J, Wang H, Feng M, Umeshbabu E, Li Y, Wu Q, Yang Y (2018) Stabilizing Li10SnP2S12/Li interface via an in situ formed solid electrolyte interphase layer. ACS Appl Mater Interfaces 10:52473–52482
31.
Zurück zum Zitat Matsumoto K, Hwang J, Kaushik S (2019) Advances in sodium secondary batteries utilizing ionic liquid electrolytes. Energy Environ Sci 12:3247–3287 Matsumoto K, Hwang J, Kaushik S (2019) Advances in sodium secondary batteries utilizing ionic liquid electrolytes. Energy Environ Sci 12:3247–3287
32.
Zurück zum Zitat Yang Q, Zhang Z, Sun XG (2018) Ionic liquids and derived materials for lithium and sodium batteries. Chem Soc Rev 47:2020–2064 Yang Q, Zhang Z, Sun XG (2018) Ionic liquids and derived materials for lithium and sodium batteries. Chem Soc Rev 47:2020–2064
33.
Zurück zum Zitat Bai S, Da P, Li C (2019) Planar perovskite solar cells with long-term stability using ionic liquid additives. Nat 571:245–250 Bai S, Da P, Li C (2019) Planar perovskite solar cells with long-term stability using ionic liquid additives. Nat 571:245–250
34.
Zurück zum Zitat Sun H, Zhu GZ, Zhu YM (2020) High-safety and high-energy-density lithium metal batteries in a novel ionic-liquid electrolyte. Adv Mater 32:2001741 Sun H, Zhu GZ, Zhu YM (2020) High-safety and high-energy-density lithium metal batteries in a novel ionic-liquid electrolyte. Adv Mater 32:2001741
35.
Zurück zum Zitat Wang H, Chen Y, Hood Z, Sahu G, Pandian A, Keum J, An K, Liang C (2016) An air-stable Na3SbS4 superionic conductor prepared by a rapid and economic synthetic procedure. Angew Chem Int Ed 55:8551–8555 Wang H, Chen Y, Hood Z, Sahu G, Pandian A, Keum J, An K, Liang C (2016) An air-stable Na3SbS4 superionic conductor prepared by a rapid and economic synthetic procedure. Angew Chem Int Ed 55:8551–8555
36.
Zurück zum Zitat Banerjee A, Park K, Heo J, Nam Y, Moon C, Oh S, Hong S, Jung Y (2016) Na3SbS4: a solution processable sodium superionic conductor for all-solid-state sodium-ion batteries. Angew Chem Int Ed 55:9634–9638 Banerjee A, Park K, Heo J, Nam Y, Moon C, Oh S, Hong S, Jung Y (2016) Na3SbS4: a solution processable sodium superionic conductor for all-solid-state sodium-ion batteries. Angew Chem Int Ed 55:9634–9638
37.
Zurück zum Zitat Fuchs T, Culver SP, Till P, Zeier WG (2020) Defect-mediated conductivity enhancements in Na3−xPn1−xWxS4 (Pn = P, Sb) using aliovalent substitutions. ACS Energy Lett 5:146–151 Fuchs T, Culver SP, Till P, Zeier WG (2020) Defect-mediated conductivity enhancements in Na3−xPn1−xWxS4 (Pn = P, Sb) using aliovalent substitutions. ACS Energy Lett 5:146–151
38.
Zurück zum Zitat Hayashi A, Masuzawa N, Yubuchi S, Tsuji F, Hotehama C, Sakuda A, Tatsumisago M (2019) A sodium-ion sulfide solid electrolyte with unprecedented conductivity at room temperature. Nat Commun 10:5266 Hayashi A, Masuzawa N, Yubuchi S, Tsuji F, Hotehama C, Sakuda A, Tatsumisago M (2019) A sodium-ion sulfide solid electrolyte with unprecedented conductivity at room temperature. Nat Commun 10:5266
39.
Zurück zum Zitat Kim TW, Park KH, Choi YE, Lee JY, Jung YS (2018) Aqueous-solution synthesis of Na3SbS4 solid electrolytes for all-solid-state Na-ion batteries. J Mater Chem A 6:840–844 Kim TW, Park KH, Choi YE, Lee JY, Jung YS (2018) Aqueous-solution synthesis of Na3SbS4 solid electrolytes for all-solid-state Na-ion batteries. J Mater Chem A 6:840–844
40.
Zurück zum Zitat Cao H, Yu M, Zhang L, Zhang Z, Yan X, Li P, Yu C (2020) Stabilizing Na3SbS4/Na interface by rational design via Cl doping and aqueous processing. J Mater Sci Technol 70:168–175 Cao H, Yu M, Zhang L, Zhang Z, Yan X, Li P, Yu C (2020) Stabilizing Na3SbS4/Na interface by rational design via Cl doping and aqueous processing. J Mater Sci Technol 70:168–175
41.
Zurück zum Zitat Liu Y, Zhang L, Liu D (2019) Turbostratic carbon-localised FeS2 nanocrystals as anodes for high-performance sodium-ion batteries. Nanoscale 11:15497 Liu Y, Zhang L, Liu D (2019) Turbostratic carbon-localised FeS2 nanocrystals as anodes for high-performance sodium-ion batteries. Nanoscale 11:15497
42.
Zurück zum Zitat Wan H, Cai L, Yao Y, Weng W, Feng Y, Mwizerwa JP (2020) Self-formed electronic/ionic conductive Fe3S4@S@0.9Na3SbS4·0.1NaI composite for high-performance room-temperature all-solid-state sodium-sulfur battery. Small 16:2001574 Wan H, Cai L, Yao Y, Weng W, Feng Y, Mwizerwa JP (2020) Self-formed electronic/ionic conductive Fe3S4@S@0.9Na3SbS4·0.1NaI composite for high-performance room-temperature all-solid-state sodium-sulfur battery. Small 16:2001574
43.
Zurück zum Zitat Gamo H, Phuc NHH, Matsuda R, Muto H, Matsuda A (2019) Multiphase Na3SbS4 with high ionic conductivity. Mater Today Energy 13:45–49 Gamo H, Phuc NHH, Matsuda R, Muto H, Matsuda A (2019) Multiphase Na3SbS4 with high ionic conductivity. Mater Today Energy 13:45–49
44.
Zurück zum Zitat Wan H, Mwizerwa JP, Han F, Weng W, Yang J, Wang C (2019) Grain-boundary-resistance-less Na3SbS4-Se solid electrolytes for all-solid-state sodium batteries. Nano Energy 66:104109 Wan H, Mwizerwa JP, Han F, Weng W, Yang J, Wang C (2019) Grain-boundary-resistance-less Na3SbS4-Se solid electrolytes for all-solid-state sodium batteries. Nano Energy 66:104109
45.
Zurück zum Zitat Wan H, Weng W, Han F, Cai L, Wang C, Yao X (2020) Bio-inspired nanoscaled electronic/ionic conduction networks for room-temperature all-solid-state sodium-sulfur battery. Nano Today 33:100860 Wan H, Weng W, Han F, Cai L, Wang C, Yao X (2020) Bio-inspired nanoscaled electronic/ionic conduction networks for room-temperature all-solid-state sodium-sulfur battery. Nano Today 33:100860
46.
Zurück zum Zitat Zhang Q, Zhang C, Hood ZD, Chi M, Liang C, Jalarvo NH (2020) Abnormally low activation energy in cubic Na3SbS4 superionic conductors. Chem Mater 32:2264–2271 Zhang Q, Zhang C, Hood ZD, Chi M, Liang C, Jalarvo NH (2020) Abnormally low activation energy in cubic Na3SbS4 superionic conductors. Chem Mater 32:2264–2271
47.
Zurück zum Zitat Zhang D, Cao X, Xu D, Wan N, Yu C, Hu W, Yan X (2018) Synthesis of cubic Na3SbS4 solid electrolyte with enhanced ion transport for all-solid-state sodium-ion batteries. Electrochim Acta 259:100–109 Zhang D, Cao X, Xu D, Wan N, Yu C, Hu W, Yan X (2018) Synthesis of cubic Na3SbS4 solid electrolyte with enhanced ion transport for all-solid-state sodium-ion batteries. Electrochim Acta 259:100–109
48.
Zurück zum Zitat Cheng E, Sharafi A, Sakamoto J (2017) Intergranular Li metal propagation through polycrystalline Li6.25Al0.25La3Zr2O12 ceramic electrolyte. Electrochim Acta 223:85–91 Cheng E, Sharafi A, Sakamoto J (2017) Intergranular Li metal propagation through polycrystalline Li6.25Al0.25La3Zr2O12 ceramic electrolyte. Electrochim Acta 223:85–91
49.
Zurück zum Zitat Shang Y, Chen N, Li Y, Chen S, Lai J, Huang Y, Qu W, Wu F, Chen R (2020) An “ether-in-water” electrolyte boosts stable interfacial chemistry for aqueous lithium-ion batteries. Adv Mater 32:2002017 Shang Y, Chen N, Li Y, Chen S, Lai J, Huang Y, Qu W, Wu F, Chen R (2020) An “ether-in-water” electrolyte boosts stable interfacial chemistry for aqueous lithium-ion batteries. Adv Mater 32:2002017
50.
Zurück zum Zitat Wang C, Gong Y, Liu B (2017) Conformal, nanoscale ZnO surface modification of garnet-based solid-state electrolyte for lithium metal anodes. Nano lett 17:565–571 Wang C, Gong Y, Liu B (2017) Conformal, nanoscale ZnO surface modification of garnet-based solid-state electrolyte for lithium metal anodes. Nano lett 17:565–571
51.
Zurück zum Zitat Dewees R, Wang H (2019) Synthesis and properties of NASICON-type LATP and LAGP solid electrolytes. Chemsuschem 12:3713–3725 Dewees R, Wang H (2019) Synthesis and properties of NASICON-type LATP and LAGP solid electrolytes. Chemsuschem 12:3713–3725
52.
Zurück zum Zitat Brutti S, Navarra MA, Maresca G (2019) Ionic liquid electrolytes for room temperature sodium battery systems. Electrochim Acta 306:317–326 Brutti S, Navarra MA, Maresca G (2019) Ionic liquid electrolytes for room temperature sodium battery systems. Electrochim Acta 306:317–326
53.
Zurück zum Zitat Hong Z, Viswanathan V (2019) Prospect of thermal shock induced healing of lithium dendrite. ACS Energy Lett 4:1012–1019 Hong Z, Viswanathan V (2019) Prospect of thermal shock induced healing of lithium dendrite. ACS Energy Lett 4:1012–1019
54.
Zurück zum Zitat Nguyen CC, Woo SW, Song SW (2012) Understanding the interfacial processes at silicon–copper electrodes in ionic liquid battery electrolyte. J Phys Chem C 116:14764–14771 Nguyen CC, Woo SW, Song SW (2012) Understanding the interfacial processes at silicon–copper electrodes in ionic liquid battery electrolyte. J Phys Chem C 116:14764–14771
55.
Zurück zum Zitat Zhao J, Liao L, Shi F (2017) Surface fluorination of reactive battery anode materials for enhanced stability. J Am Chem Soc 139:11550–11558 Zhao J, Liao L, Shi F (2017) Surface fluorination of reactive battery anode materials for enhanced stability. J Am Chem Soc 139:11550–11558
56.
Zurück zum Zitat Lang J, Long Y, Qu J (2019) One-pot solution coating of high quality LiF layer to stabilize Li metal anode. Energy Storage Mater 16:85–90 Lang J, Long Y, Qu J (2019) One-pot solution coating of high quality LiF layer to stabilize Li metal anode. Energy Storage Mater 16:85–90
57.
Zurück zum Zitat Gao Y, Zhao Y, Li Y (2017) Interfacial chemistry regulation via a skin-grafting strategy enables high-performance lithium-metal batteries. J Am Chem Soc 139:15288–15291 Gao Y, Zhao Y, Li Y (2017) Interfacial chemistry regulation via a skin-grafting strategy enables high-performance lithium-metal batteries. J Am Chem Soc 139:15288–15291
58.
Zurück zum Zitat Zhang X, Liu T, Zhang S (2017) Synergistic coupling between Li6.75La3Zr1.75Ta0.25O12 and Poly(vinylidene fluoride) induces high ionic conductivity, mechanical strength, and thermal stability of solid composite electrolytes. J Am Chem Soc 139:13779–13785 Zhang X, Liu T, Zhang S (2017) Synergistic coupling between Li6.75La3Zr1.75Ta0.25O12 and Poly(vinylidene fluoride) induces high ionic conductivity, mechanical strength, and thermal stability of solid composite electrolytes. J Am Chem Soc 139:13779–13785
59.
Zurück zum Zitat Zhang Y, Sun Y, Peng L (2019) Se as eutectic accelerator in sulfurized polyacrylonitrile for high performance all-solid-state lithium-sulfur battery. Energy Storage Mater 21:287–296 Zhang Y, Sun Y, Peng L (2019) Se as eutectic accelerator in sulfurized polyacrylonitrile for high performance all-solid-state lithium-sulfur battery. Energy Storage Mater 21:287–296
Metadaten
Titel
Preparation and electrochemical properties of ionic-liquid-modified Na3SbS4 membrane composite electrolytes
verfasst von
Ziqi Zhang
Haonan Cao
Long Zhang
Publikationsdatum
23.02.2021
Verlag
Springer US
Erschienen in
Journal of Materials Science / Ausgabe 17/2021
Print ISSN: 0022-2461
Elektronische ISSN: 1573-4803
DOI
https://doi.org/10.1007/s10853-021-05940-z

Weitere Artikel der Ausgabe 17/2021

Journal of Materials Science 17/2021 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.