Skip to main content
Erschienen in: Journal of Materials Science: Materials in Electronics 5/2021

28.01.2021

Preparation and evaluation of structural, optical, dielectric and thermal characteristics of unirradiated and irradiated polyurethane/magnesium silicate composites

verfasst von: A. Abdeldaym, M. M. Magida, H. H. Elnahas

Erschienen in: Journal of Materials Science: Materials in Electronics | Ausgabe 5/2021

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Polyurethane filled with various amounts (5, 10, 15, and 20 wt%) of magnesium silicate was fabricated by the solution casting method. The structural and physical properties of PU due to the influence of adding magnesium silicate together with gamma irradiation were investigated. The structural properties of the prepared composites were investigated via X-ray diffraction (XRD) and scanning electron microscopy (SEM). The XRD analysis shows magnesium silicate formation in the PU matrix, which was further confirmed by the surface morphology images obtained by the SEM. Optical properties were characterized by ultraviolet–visible (UV–Vis) spectrophotometer. Refractive index dispersion was analyzed via the Wemple–Didomenico models. For both the unirradiated and irradiated composites, the ratio of carrier density to the effective mass, and the plasma frequency were calculated. Influences of magnesium silicate and gamma irradiation on these parameters as well as the dependence on the aforementioned additions were investigated. The dielectric investigation of the prepared composites reflected the increase of the dielectric constant, dielectric loss, and electrical conductivity with the addition of magnesium silicate and gamma irradiation, while it lowered with raising the applied frequency. The thermal stability of the prepared composites was investigated via thermogravimetric analysis. The thermal stability of all composites is significantly enhanced with the adding magnesium silicate and gamma irradiation. Kissinger model was applied to measure the activation energy of thermal decomposition and revealed the increasing trend of activation energy with the addition of the magnesium silicate and raising gamma absorbed dose. We believe that the outcomes of this work would provide a helpful contribution to the engineering of the components and the processes involved in the given structure presented.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Y. Jiang, Z. Da, F. Qiu, D. Yang, Y. Guan, G. Cao, Opt. Mater. 75, 858–868 (2018)CrossRef Y. Jiang, Z. Da, F. Qiu, D. Yang, Y. Guan, G. Cao, Opt. Mater. 75, 858–868 (2018)CrossRef
2.
Zurück zum Zitat D.C. Joshi, S. Saxena, M. Jayakannan, ACS Appl. Polym. Mater. 1, 1866–1880 (2019)CrossRef D.C. Joshi, S. Saxena, M. Jayakannan, ACS Appl. Polym. Mater. 1, 1866–1880 (2019)CrossRef
3.
Zurück zum Zitat T. Cao, F. Zhao, Z. Da, F. Qiu, D. Yang, Y. Guan, G. Cao, Z. Zhao, J. Li, X. Guo, Opt. Mater. 60, 45 (2016)CrossRef T. Cao, F. Zhao, Z. Da, F. Qiu, D. Yang, Y. Guan, G. Cao, Z. Zhao, J. Li, X. Guo, Opt. Mater. 60, 45 (2016)CrossRef
4.
Zurück zum Zitat V. Somisetti, R. Narayan, R.V.S.N. Kothapalli, Prog. Org. Coat. 134, 91–102 (2019)CrossRef V. Somisetti, R. Narayan, R.V.S.N. Kothapalli, Prog. Org. Coat. 134, 91–102 (2019)CrossRef
5.
Zurück zum Zitat F. Qiu, C. Chen, Q. Zhou, Z. Cao, G. Cao, Y. Guan, D. Yang, Opt. Mater. 36(7), 1153–1159 (2014)CrossRef F. Qiu, C. Chen, Q. Zhou, Z. Cao, G. Cao, Y. Guan, D. Yang, Opt. Mater. 36(7), 1153–1159 (2014)CrossRef
7.
Zurück zum Zitat F.X. Qiu, C.H. Chen, Q.L. Zhou, Z.J. Cao, G.R. Cao, Y.J. Guan, D.Y. Yang, Opt. Mater. 36, 1153 (2014)CrossRef F.X. Qiu, C.H. Chen, Q.L. Zhou, Z.J. Cao, G.R. Cao, Y.J. Guan, D.Y. Yang, Opt. Mater. 36, 1153 (2014)CrossRef
8.
9.
Zurück zum Zitat E. Burgaz, in Polyurethane Insulation Foams for Energy and Sustainability (Springer International Publishing, 2019), pp. 233–289 E. Burgaz, in Polyurethane Insulation Foams for Energy and Sustainability (Springer International Publishing, 2019), pp. 233–289
10.
Zurück zum Zitat E.G. Bajsić, V. Filipan, V.O. Bulatović, V. Mandić, Polym. Bull. 74, 2939–2955 (2017)CrossRef E.G. Bajsić, V. Filipan, V.O. Bulatović, V. Mandić, Polym. Bull. 74, 2939–2955 (2017)CrossRef
11.
Zurück zum Zitat G. Narayanan, V.N. Vernekar, E.L. Kuyinu, C.T. Laurencin, Adv. Drug Deliv. Rev. 107, 247–276 (2016)CrossRef G. Narayanan, V.N. Vernekar, E.L. Kuyinu, C.T. Laurencin, Adv. Drug Deliv. Rev. 107, 247–276 (2016)CrossRef
12.
Zurück zum Zitat V.A. Demina, S.V. Krasheninnikov, A.I. Buzin, R.A. Kamyshinsky, N.V. Sadovskaya, E.N. Goncharov, N.A. Zhukova, M.V. Khvostov, A.V. Pavlova, T.G. Tolstikova, N.G. Sedush, S.N. Chvalun, Mater. Sci. Eng. C 112, 110813 (2020)CrossRef V.A. Demina, S.V. Krasheninnikov, A.I. Buzin, R.A. Kamyshinsky, N.V. Sadovskaya, E.N. Goncharov, N.A. Zhukova, M.V. Khvostov, A.V. Pavlova, T.G. Tolstikova, N.G. Sedush, S.N. Chvalun, Mater. Sci. Eng. C 112, 110813 (2020)CrossRef
14.
Zurück zum Zitat S. Samal, J. Vlach, P. Kavana, Ciênc. Tecnol. Mater. 28, 155–161 (2016) S. Samal, J. Vlach, P. Kavana, Ciênc. Tecnol. Mater. 28, 155–161 (2016)
17.
Zurück zum Zitat A. Carella, M. Casalboni, R. Centore, S. Fusco, C. Noce, A. Quatela, A. Peluso, A. Sirigu, Opt. Mater. 30(3), 473–477 (2007)CrossRef A. Carella, M. Casalboni, R. Centore, S. Fusco, C. Noce, A. Quatela, A. Peluso, A. Sirigu, Opt. Mater. 30(3), 473–477 (2007)CrossRef
19.
Zurück zum Zitat S. Pourhashem, M.R. Vaezi, A. Rashidi, Surf. Coat. Technol. 311, 282–294 (2017)CrossRef S. Pourhashem, M.R. Vaezi, A. Rashidi, Surf. Coat. Technol. 311, 282–294 (2017)CrossRef
20.
Zurück zum Zitat Y. Lu, P. Zhang, M. Fan, P. Jiang, Y. Bao, X. Gao, J. Xia, Polymer 182, 121832 (2019)CrossRef Y. Lu, P. Zhang, M. Fan, P. Jiang, Y. Bao, X. Gao, J. Xia, Polymer 182, 121832 (2019)CrossRef
21.
Zurück zum Zitat L.F. Kosyanchuk, N.V. Kozak, N.V. Babkina, T.V. Bezrodna, O.O. Brovko, Opt. Mater. 85, 408–413 (2018)CrossRef L.F. Kosyanchuk, N.V. Kozak, N.V. Babkina, T.V. Bezrodna, O.O. Brovko, Opt. Mater. 85, 408–413 (2018)CrossRef
22.
Zurück zum Zitat J. Lv, H. Wang, Y. Liu, J. Chen, H. Chen, J. Xu, J. Sun, H. Zhao, C. Zhu, Compos. Sci. Technol. 186, 107908 (2020)CrossRef J. Lv, H. Wang, Y. Liu, J. Chen, H. Chen, J. Xu, J. Sun, H. Zhao, C. Zhu, Compos. Sci. Technol. 186, 107908 (2020)CrossRef
23.
Zurück zum Zitat A.K. Agrawal, B. Singh, Y.S. Kashyap, M. Shukla, B.S. Manjunath, S.C. Gadkari, J. Synchrotron Rad. 26, 1797–1807 (2019)CrossRef A.K. Agrawal, B. Singh, Y.S. Kashyap, M. Shukla, B.S. Manjunath, S.C. Gadkari, J. Synchrotron Rad. 26, 1797–1807 (2019)CrossRef
24.
Zurück zum Zitat A. Mogha, Mater. Today: Proc. 28, 1455–1459 (2020) A. Mogha, Mater. Today: Proc. 28, 1455–1459 (2020)
25.
26.
Zurück zum Zitat M. Verma, S.S. Chauhan, S.K. Dhawan, V. Choudhary, Composites B 1201, 118–127 (2017)CrossRef M. Verma, S.S. Chauhan, S.K. Dhawan, V. Choudhary, Composites B 1201, 118–127 (2017)CrossRef
27.
28.
30.
Zurück zum Zitat M. Mohammadian-Kohol, M. Asgari, H.R. Shakur, Radiat. Phys. Chem. 145, 11–18 (2018)CrossRef M. Mohammadian-Kohol, M. Asgari, H.R. Shakur, Radiat. Phys. Chem. 145, 11–18 (2018)CrossRef
31.
Zurück zum Zitat S.B. Aziz, O.G.H. Abdullah, M.A. Rasheed, J. Appl. Polym. Sci. 44847, 1–8 (2017) S.B. Aziz, O.G.H. Abdullah, M.A. Rasheed, J. Appl. Polym. Sci. 44847, 1–8 (2017)
32.
34.
Zurück zum Zitat S. Yasmeen, F. Iqbal, T. Munawar, M.A. Nawaz, M. Asghar, A. Hussain, Ceram. Int. 45, 17859–17873 (2019)CrossRef S. Yasmeen, F. Iqbal, T. Munawar, M.A. Nawaz, M. Asghar, A. Hussain, Ceram. Int. 45, 17859–17873 (2019)CrossRef
35.
Zurück zum Zitat C. Mrabet, A. Boukhachem, M. Amlouk, T. Manoubi, J. Alloys Compd. 666, 392–405 (2016)CrossRef C. Mrabet, A. Boukhachem, M. Amlouk, T. Manoubi, J. Alloys Compd. 666, 392–405 (2016)CrossRef
36.
Zurück zum Zitat K. Dincer, B. Waisi, G. Önal, N. Tuğluoğlu, J. McCutcheon, Ö.F. Yüksele, Synth. Metals 237, 16–22 (2018)CrossRef K. Dincer, B. Waisi, G. Önal, N. Tuğluoğlu, J. McCutcheon, Ö.F. Yüksele, Synth. Metals 237, 16–22 (2018)CrossRef
37.
38.
Zurück zum Zitat D. Vikraman, H.J. Park, S.-I. Kim, M. Thaiyan, J. Alloys. Compd. 686, 616–627 (2016)CrossRef D. Vikraman, H.J. Park, S.-I. Kim, M. Thaiyan, J. Alloys. Compd. 686, 616–627 (2016)CrossRef
39.
Zurück zum Zitat X. Hu, W. Qian, X. Li, G. Fei, G. Luo, Z. Wang, H. Xia, Polym. Compos. 40, 1397–1406 (2019)CrossRef X. Hu, W. Qian, X. Li, G. Fei, G. Luo, Z. Wang, H. Xia, Polym. Compos. 40, 1397–1406 (2019)CrossRef
40.
Zurück zum Zitat R. Sali, L.R. Naik, Int. J. Mod. Trends Eng. Res. 3, 6–11 (2016) R. Sali, L.R. Naik, Int. J. Mod. Trends Eng. Res. 3, 6–11 (2016)
41.
Zurück zum Zitat G. Kandhol, H. Wadhwa, S. Chand, S. Mahendia, S. Kumar, Vacuum 160, 384–393 (2019)CrossRef G. Kandhol, H. Wadhwa, S. Chand, S. Mahendia, S. Kumar, Vacuum 160, 384–393 (2019)CrossRef
42.
Zurück zum Zitat S. Devikala, P. Kamaraj, M. Arthanareeswari, Mater. Today: Proc. 14, 288–295 (2019) S. Devikala, P. Kamaraj, M. Arthanareeswari, Mater. Today: Proc. 14, 288–295 (2019)
43.
Zurück zum Zitat B.M. Greenhoe, M.K. Hassan, J.S. Wiggins, K.A. Mauritz, J. Polym. Sci. B: Polym. Phys. 54(19), 1918–1923 (2016)CrossRef B.M. Greenhoe, M.K. Hassan, J.S. Wiggins, K.A. Mauritz, J. Polym. Sci. B: Polym. Phys. 54(19), 1918–1923 (2016)CrossRef
44.
45.
Zurück zum Zitat D.K. Chattopadhyay, D.C. Webster, Prog. Polym. Sci. 34, 1068–1133 (2009)CrossRef D.K. Chattopadhyay, D.C. Webster, Prog. Polym. Sci. 34, 1068–1133 (2009)CrossRef
Metadaten
Titel
Preparation and evaluation of structural, optical, dielectric and thermal characteristics of unirradiated and irradiated polyurethane/magnesium silicate composites
verfasst von
A. Abdeldaym
M. M. Magida
H. H. Elnahas
Publikationsdatum
28.01.2021
Verlag
Springer US
Erschienen in
Journal of Materials Science: Materials in Electronics / Ausgabe 5/2021
Print ISSN: 0957-4522
Elektronische ISSN: 1573-482X
DOI
https://doi.org/10.1007/s10854-021-05296-9

Weitere Artikel der Ausgabe 5/2021

Journal of Materials Science: Materials in Electronics 5/2021 Zur Ausgabe

Neuer Inhalt