Skip to main content
Erschienen in: Neural Computing and Applications 11/2017

19.02.2016 | Original Article

Preparation and optimization of chitosan/polyethylene oxide nanofiber diameter using artificial neural networks

verfasst von: Najmeh Ketabchi, Majid Naghibzadeh, Mahdi Adabi, Seyedeh Sara Esnaashari, Reza Faridi-Majidi

Erschienen in: Neural Computing and Applications | Ausgabe 11/2017

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Chitosan/polyethylene oxide (PEO) solution makes electrospun nanofibers with decreased beads and diameters in comparison with lonely chitosan (CS). The aim of this work was to find an artificial neural network (ANN) model for predicting the chitosan/PEO blend electrospun nanofiber diameter. Chitosan/PEO concentration ratio, distance between nozzle tip and collector, applied voltage, and flow rate were considered as input variables, and chitosan/PEO blend electrospun nanofiber diameter was considered as output variable. Scanning electron microscopy images indicated that electrospun nanofiber diameter was approximately 50–185 nm. For increasing validity, k-fold cross validation method was applied to dataset. The ANN technique was used for training and testing via fivefold of dataset. The best results of prediction were obtained via network with three hidden layers including 10, 15, and 5 nodes in each layer, respectively. The mean square error (MSE) and correlation coefficient between the observed and predicted thickness of the nanofibers in the chosen model were about 0.0707 and 0.9630, respectively, indicating the ANN technique validity in the prediction procedure. For the analysis of interactions between the involved electrospinning parameters and nanofiber diameter, 3D graphs in various levels were plotted. In conclusion, the results indicated that using the prediction process via ANN could be relevant in the decision to produce nanofibers with desired shape and diameter via electrospinning.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Literatur
1.
Zurück zum Zitat Ma Z, Kotaki M, Inai R, Ramakrishna S (2005) Potential of nanofiber matrix as tissue-engineering scaffolds. Tissue Eng 11(1–2):101–109CrossRef Ma Z, Kotaki M, Inai R, Ramakrishna S (2005) Potential of nanofiber matrix as tissue-engineering scaffolds. Tissue Eng 11(1–2):101–109CrossRef
2.
Zurück zum Zitat Fang J, Wang X, Lin T (2011) Functional applications of electrospun nanofibers. In: Tong L (ed) Nanofibers-production, properties and functional applications. InTech–Open Access Publisher, Rijeka, Croatia, pp 287–326 Fang J, Wang X, Lin T (2011) Functional applications of electrospun nanofibers. In: Tong L (ed) Nanofibers-production, properties and functional applications. InTech–Open Access Publisher, Rijeka, Croatia, pp 287–326
3.
Zurück zum Zitat Huang Z-M, Zhang YZ, Kotaki M, Ramakrishna S (2003) A review on polymer nanofibers by electrospinning and their applications in nanocomposites. Compos Sci Technol 63(15):2223–2253CrossRef Huang Z-M, Zhang YZ, Kotaki M, Ramakrishna S (2003) A review on polymer nanofibers by electrospinning and their applications in nanocomposites. Compos Sci Technol 63(15):2223–2253CrossRef
4.
Zurück zum Zitat Deitzel JM, Kleinmeyer J, Harris DEA, Tan NCB (2001) The effect of processing variables on the morphology of electrospun nanofibers and textiles. Polymer 42(1):261–272CrossRef Deitzel JM, Kleinmeyer J, Harris DEA, Tan NCB (2001) The effect of processing variables on the morphology of electrospun nanofibers and textiles. Polymer 42(1):261–272CrossRef
5.
Zurück zum Zitat Agarwal S, Wendorff JH, Greiner A (2008) Use of electrospinning technique for biomedical applications. Polymer 49(26):5603–5621CrossRef Agarwal S, Wendorff JH, Greiner A (2008) Use of electrospinning technique for biomedical applications. Polymer 49(26):5603–5621CrossRef
6.
Zurück zum Zitat Beachley V, Wen X (2009) Effect of electrospinning parameters on the nanofiber diameter and length. Mater Sci Eng C 29(3):663–668CrossRef Beachley V, Wen X (2009) Effect of electrospinning parameters on the nanofiber diameter and length. Mater Sci Eng C 29(3):663–668CrossRef
7.
Zurück zum Zitat Maleki M, Amani-Tehran M, Latifi M, Mathur S (2014) Drug release profile in core–shell nanofibrous structures: a study on Peppas equation and artificial neural network modeling. Comput Meth Prog Bio 113(1):92–100CrossRef Maleki M, Amani-Tehran M, Latifi M, Mathur S (2014) Drug release profile in core–shell nanofibrous structures: a study on Peppas equation and artificial neural network modeling. Comput Meth Prog Bio 113(1):92–100CrossRef
8.
Zurück zum Zitat Ziabari M, Mottaghitalab V, Haghi AK (2009) Application of direct tracking method for measuring electrospun nanofiber diameter. Braz J Chem Eng 26(1):53–62CrossRef Ziabari M, Mottaghitalab V, Haghi AK (2009) Application of direct tracking method for measuring electrospun nanofiber diameter. Braz J Chem Eng 26(1):53–62CrossRef
9.
Zurück zum Zitat Gibson PW, Lee C, Ko F, Reneker D (2007) Application of nanofiber technology to nonwoven thermal insulation. J Eng Fiber Fabr 2(2):32–40 Gibson PW, Lee C, Ko F, Reneker D (2007) Application of nanofiber technology to nonwoven thermal insulation. J Eng Fiber Fabr 2(2):32–40
10.
Zurück zum Zitat Pham QP, Sharma U, Mikos AG (2006) Electrospinning of polymeric nanofibers for tissue engineering applications: a review. Tissue Eng 12(5):1197–1211CrossRef Pham QP, Sharma U, Mikos AG (2006) Electrospinning of polymeric nanofibers for tissue engineering applications: a review. Tissue Eng 12(5):1197–1211CrossRef
11.
Zurück zum Zitat Naghibzadeh M, Adabi M (2014) Evaluation of effective electrospinning parameters controlling gelatin nanofibers diameter via modelling artificial neural networks. Fiber Polym 15(4):767–777CrossRef Naghibzadeh M, Adabi M (2014) Evaluation of effective electrospinning parameters controlling gelatin nanofibers diameter via modelling artificial neural networks. Fiber Polym 15(4):767–777CrossRef
12.
Zurück zum Zitat Ribeiro C, Sencadas V, Ribelles JLG, Lanceros-Méndez S (2010) Influence of processing conditions on polymorphism and nanofiber morphology of electroactive poly (vinylidene fluoride) electrospun membranes. Soft Mater 8(3):274–287CrossRef Ribeiro C, Sencadas V, Ribelles JLG, Lanceros-Méndez S (2010) Influence of processing conditions on polymorphism and nanofiber morphology of electroactive poly (vinylidene fluoride) electrospun membranes. Soft Mater 8(3):274–287CrossRef
13.
Zurück zum Zitat Rošic R, Pelipenko J, Kocbek P, Baumgartner S, Bešter-Rogač M, Kristl J (2012) The role of rheology of polymer solutions in predicting nanofiber formation by electrospinning. Eur Polym J 48(8):1374–1384CrossRef Rošic R, Pelipenko J, Kocbek P, Baumgartner S, Bešter-Rogač M, Kristl J (2012) The role of rheology of polymer solutions in predicting nanofiber formation by electrospinning. Eur Polym J 48(8):1374–1384CrossRef
14.
Zurück zum Zitat Yördem OS, Papila M, Menceloğlu YZ (2008) Effects of electrospinning parameters on polyacrylonitrile nanofiber diameter: an investigation by response surface methodology. Mater Des 29(1):34–44CrossRef Yördem OS, Papila M, Menceloğlu YZ (2008) Effects of electrospinning parameters on polyacrylonitrile nanofiber diameter: an investigation by response surface methodology. Mater Des 29(1):34–44CrossRef
15.
Zurück zum Zitat Vasita R, Katti DS (2006) Nanofibers and their applications in tissue engineering. Int J Nanomed 1(1):15CrossRef Vasita R, Katti DS (2006) Nanofibers and their applications in tissue engineering. Int J Nanomed 1(1):15CrossRef
16.
Zurück zum Zitat Gibson P, Schreuder-Gibson H, Rivin D (2001) Transport properties of porous membranes based on electrospun nanofibers. Colloids Surf A 187:469–481CrossRef Gibson P, Schreuder-Gibson H, Rivin D (2001) Transport properties of porous membranes based on electrospun nanofibers. Colloids Surf A 187:469–481CrossRef
17.
Zurück zum Zitat Khanlou HM, Sadollah A, Ang BC, Kim JH, Talebian S, Ghadimi A (2014) Prediction and optimization of electrospinning parameters for polymethyl methacrylate nanofiber fabrication using response surface methodology and artificial neural networks. Neural Comput Appl 25(3–4):767–777CrossRef Khanlou HM, Sadollah A, Ang BC, Kim JH, Talebian S, Ghadimi A (2014) Prediction and optimization of electrospinning parameters for polymethyl methacrylate nanofiber fabrication using response surface methodology and artificial neural networks. Neural Comput Appl 25(3–4):767–777CrossRef
18.
Zurück zum Zitat Qu J, Wang D, Wang H, Dong Y, Zhang F, Zuo B, Zhang H (2013) Electrospun silk fibroin nanofibers in different diameters support neurite outgrowth and promote astrocyte migration. J Biomed Mater Res A 101(9):2667–2678CrossRef Qu J, Wang D, Wang H, Dong Y, Zhang F, Zuo B, Zhang H (2013) Electrospun silk fibroin nanofibers in different diameters support neurite outgrowth and promote astrocyte migration. J Biomed Mater Res A 101(9):2667–2678CrossRef
19.
Zurück zum Zitat Kanafchian M, Valizadeh M, Haghi AK (2011) Prediction of nanofiber diameter for improvements in incorporation of multilayer electrospun nanofibers. Korean J Chem Eng 28(3):751–755CrossRef Kanafchian M, Valizadeh M, Haghi AK (2011) Prediction of nanofiber diameter for improvements in incorporation of multilayer electrospun nanofibers. Korean J Chem Eng 28(3):751–755CrossRef
20.
Zurück zum Zitat Thompson CJ, Chase GG, Yarin AL, Reneker DH (2007) Effects of parameters on nanofiber diameter determined from electrospinning model. Polymer 48(23):6913–6922CrossRef Thompson CJ, Chase GG, Yarin AL, Reneker DH (2007) Effects of parameters on nanofiber diameter determined from electrospinning model. Polymer 48(23):6913–6922CrossRef
21.
Zurück zum Zitat Faridi-Majidi R, Ziyadi H, Naderi N, Amani A (2012) Use of artificial neural networks to determine parameters controlling the nanofibers diameter in electrospinning of nylon-6, 6. J Appl Polym Sci 124(2):1589–1597CrossRef Faridi-Majidi R, Ziyadi H, Naderi N, Amani A (2012) Use of artificial neural networks to determine parameters controlling the nanofibers diameter in electrospinning of nylon-6, 6. J Appl Polym Sci 124(2):1589–1597CrossRef
22.
Zurück zum Zitat Nasouri K, Bahrambeygi H, Rabbi A, Shoushtari AM, Kaflou A (2012) Modeling and optimization of electrospun PAN nanofiber diameter using response surface methodology and artificial neural networks. J Appl Polym Sci 126(1):127–135CrossRef Nasouri K, Bahrambeygi H, Rabbi A, Shoushtari AM, Kaflou A (2012) Modeling and optimization of electrospun PAN nanofiber diameter using response surface methodology and artificial neural networks. J Appl Polym Sci 126(1):127–135CrossRef
23.
Zurück zum Zitat Rezaei B, Askari M, Shoushtari AM, Ghani M, Haji A (2012) Application of response surface methodology (RSM) and Artificial Neural Network (ANN) in diameter optimization of thermo regulating nanofibers Rezaei B, Askari M, Shoushtari AM, Ghani M, Haji A (2012) Application of response surface methodology (RSM) and Artificial Neural Network (ANN) in diameter optimization of thermo regulating nanofibers
24.
Zurück zum Zitat Nasouri K, Shoushtari AM, Khamforoush M (2013) Comparison between artificial neural network and response surface methodology in the prediction of the production rate of polyacrylonitrile electrospun nanofibers. Fiber Polym 14(11):1849–1856CrossRef Nasouri K, Shoushtari AM, Khamforoush M (2013) Comparison between artificial neural network and response surface methodology in the prediction of the production rate of polyacrylonitrile electrospun nanofibers. Fiber Polym 14(11):1849–1856CrossRef
25.
Zurück zum Zitat Rabbi A, Nasouri K, Bahrambeygi H, Shoushtari AM, Babaei MR (2012) RSM and ANN approaches for modeling and optimizing of electrospun polyurethane nanofibers morphology. Fiber Polym 13(8):1007–1014CrossRef Rabbi A, Nasouri K, Bahrambeygi H, Shoushtari AM, Babaei MR (2012) RSM and ANN approaches for modeling and optimizing of electrospun polyurethane nanofibers morphology. Fiber Polym 13(8):1007–1014CrossRef
26.
Zurück zum Zitat Desai KM, Survase SA, Saudagar PS, Lele SS, Singhal RS (2008) Comparison of artificial neural network (ANN) and response surface methodology (RSM) in fermentation media optimization: case study of fermentative production of scleroglucan. Biochem Eng J 41(3):266–273CrossRef Desai KM, Survase SA, Saudagar PS, Lele SS, Singhal RS (2008) Comparison of artificial neural network (ANN) and response surface methodology (RSM) in fermentation media optimization: case study of fermentative production of scleroglucan. Biochem Eng J 41(3):266–273CrossRef
27.
Zurück zum Zitat Bas D, Boyaci IH (2007) Modeling and optimization II: comparison of estimation capabilities of response surface methodology with artificial neural networks in a biochemical reaction. J Food Eng 78(3):846–854CrossRef Bas D, Boyaci IH (2007) Modeling and optimization II: comparison of estimation capabilities of response surface methodology with artificial neural networks in a biochemical reaction. J Food Eng 78(3):846–854CrossRef
28.
Zurück zum Zitat Lou W, Nakai S (2001) Application of artificial neural networks for predicting the thermal inactivation of bacteria: a combined effect of temperature, pH and water activity. Food Res Int 34(7):573–579CrossRef Lou W, Nakai S (2001) Application of artificial neural networks for predicting the thermal inactivation of bacteria: a combined effect of temperature, pH and water activity. Food Res Int 34(7):573–579CrossRef
29.
Zurück zum Zitat Marchitan N, Cojocaru C, Mereuta A, Duca G, Cretescu I, Gonta M (2010) Modeling and optimization of tartaric acid reactive extraction from aqueous solutions: a comparison between response surface methodology and artificial neural network. Sep Purif Technol 75(3):273–285CrossRef Marchitan N, Cojocaru C, Mereuta A, Duca G, Cretescu I, Gonta M (2010) Modeling and optimization of tartaric acid reactive extraction from aqueous solutions: a comparison between response surface methodology and artificial neural network. Sep Purif Technol 75(3):273–285CrossRef
30.
Zurück zum Zitat Montgomery DC, Myers RH (1995) Response surface methodology: process and product optimization using designed experiments. Raymond H Meyers and Douglas C Montgomery A Wiley-Interscience Publications Montgomery DC, Myers RH (1995) Response surface methodology: process and product optimization using designed experiments. Raymond H Meyers and Douglas C Montgomery A Wiley-Interscience Publications
31.
Zurück zum Zitat Datt G (2012) An evolutionary approach: analysis of artificial neural networks. Int J Emerg Technol Adv Eng 2(1):160–164 Datt G (2012) An evolutionary approach: analysis of artificial neural networks. Int J Emerg Technol Adv Eng 2(1):160–164
32.
Zurück zum Zitat Jha GK (2007) Artificial neural networks. Indian Agricultural Research Institute, New Delhi Jha GK (2007) Artificial neural networks. Indian Agricultural Research Institute, New Delhi
33.
Zurück zum Zitat Abraham A (2005) Artificial neural networks. In: Sydenham P, Thorn R (eds) Handbook of measuring system design. Wiley, pp 901–908 Abraham A (2005) Artificial neural networks. In: Sydenham P, Thorn R (eds) Handbook of measuring system design. Wiley, pp 901–908
34.
Zurück zum Zitat Yadav JS, Yadav M, Jain A (2014) Artificial neural network. Int J Sci Res Educ 1(06):108–118 Yadav JS, Yadav M, Jain A (2014) Artificial neural network. Int J Sci Res Educ 1(06):108–118
35.
Zurück zum Zitat Tu JV (1996) Advantages and disadvantages of using artificial neural networks versus logistic regression for predicting medical outcomes. J Clin Epidemiol 49(11):1225–1231CrossRef Tu JV (1996) Advantages and disadvantages of using artificial neural networks versus logistic regression for predicting medical outcomes. J Clin Epidemiol 49(11):1225–1231CrossRef
36.
Zurück zum Zitat Aghajani M, Shahverdi AR, Rezayat SM, Amini MA, Amani A (2013) Preparation and optimization of acetaminophen nanosuspension through nanoprecipitation using microfluidic devices: an artificial neural networks study. Pharm Dev Technol 18(3):609–618CrossRef Aghajani M, Shahverdi AR, Rezayat SM, Amini MA, Amani A (2013) Preparation and optimization of acetaminophen nanosuspension through nanoprecipitation using microfluidic devices: an artificial neural networks study. Pharm Dev Technol 18(3):609–618CrossRef
37.
Zurück zum Zitat Chen XK (2014) Prediction of tensile properties of CNF/epoxy composites using artificial neural network. Trans Tech Publ 898:111–114 Chen XK (2014) Prediction of tensile properties of CNF/epoxy composites using artificial neural network. Trans Tech Publ 898:111–114
38.
Zurück zum Zitat Adabi M, Saber R, Naghibzadeh M, Faridbod F, Faridi-Majidi R (2015) Parameters affecting carbon nanofiber electrodes for measurement of cathodic current in electrochemical sensors: an investigation using artificial neural network. RSC Adv 5(99):81243–81252CrossRef Adabi M, Saber R, Naghibzadeh M, Faridbod F, Faridi-Majidi R (2015) Parameters affecting carbon nanofiber electrodes for measurement of cathodic current in electrochemical sensors: an investigation using artificial neural network. RSC Adv 5(99):81243–81252CrossRef
39.
Zurück zum Zitat Kang YO, Yoon IS, Lee SY, Kim DD, Lee SJ, Park WH, Hudson SM (2010) Chitosan-coated poly (vinyl alcohol) nanofibers for wound dressings. J Biomed Mater Res B 92(2):568–576 Kang YO, Yoon IS, Lee SY, Kim DD, Lee SJ, Park WH, Hudson SM (2010) Chitosan-coated poly (vinyl alcohol) nanofibers for wound dressings. J Biomed Mater Res B 92(2):568–576
40.
Zurück zum Zitat Geng X, Kwon O-H, Jang J (2005) Electrospinning of chitosan dissolved in concentrated acetic acid solution. Biomaterials 26(27):5427–5432CrossRef Geng X, Kwon O-H, Jang J (2005) Electrospinning of chitosan dissolved in concentrated acetic acid solution. Biomaterials 26(27):5427–5432CrossRef
41.
Zurück zum Zitat Sun K, Li ZH (2011) Preparations, properties and applications of chitosan based nanofibers fabricated by electrospinning. Express Polym Lett 5(4):342–361CrossRef Sun K, Li ZH (2011) Preparations, properties and applications of chitosan based nanofibers fabricated by electrospinning. Express Polym Lett 5(4):342–361CrossRef
42.
Zurück zum Zitat Karimi MA, Pourhakkak P, Adabi M, Firoozi S, Adabi M, Naghibzadeh M (2015) Using an artificial neural network for the evaluation of the parameters controlling PVA/chitosan electrospun nanofibers diameter. e-Polymers 15(2):127–138CrossRef Karimi MA, Pourhakkak P, Adabi M, Firoozi S, Adabi M, Naghibzadeh M (2015) Using an artificial neural network for the evaluation of the parameters controlling PVA/chitosan electrospun nanofibers diameter. e-Polymers 15(2):127–138CrossRef
43.
Zurück zum Zitat Talebi R, Ghiasi MM, Talebi H, Mohammadyian M, Zendehboudi S, Arabloo M, Bahadori A (2014) Application of soft computing approaches for modeling saturation pressure of reservoir oils. J Nat Gas Sci Eng 20:8–15CrossRef Talebi R, Ghiasi MM, Talebi H, Mohammadyian M, Zendehboudi S, Arabloo M, Bahadori A (2014) Application of soft computing approaches for modeling saturation pressure of reservoir oils. J Nat Gas Sci Eng 20:8–15CrossRef
44.
Zurück zum Zitat Esnaashari SS, Rezaei S, Mirzaei E, Afshari H, Rezayat SM, Faridi-Majidi R (2014) Preparation and characterization of kefiran electrospun nanofibers. Int J Biol Macromol 70:50–56CrossRef Esnaashari SS, Rezaei S, Mirzaei E, Afshari H, Rezayat SM, Faridi-Majidi R (2014) Preparation and characterization of kefiran electrospun nanofibers. Int J Biol Macromol 70:50–56CrossRef
45.
Zurück zum Zitat Jia Y-T, Gong J, Gu X-H, Kim H-Y, Dong J, Shen X-Y (2007) Fabrication and characterization of poly (vinyl alcohol)/chitosan blend nanofibers produced by electrospinning method. Carbohyd Polym 67(3):403–409CrossRef Jia Y-T, Gong J, Gu X-H, Kim H-Y, Dong J, Shen X-Y (2007) Fabrication and characterization of poly (vinyl alcohol)/chitosan blend nanofibers produced by electrospinning method. Carbohyd Polym 67(3):403–409CrossRef
46.
Zurück zum Zitat Adabi M, Saber R, Faridi-Majidi R, Faridbod F (2015) Performance of electrodes synthesized with polyacrylonitrile-based carbon nanofibers for application in electrochemical sensors and biosensors. Mater Sci Eng, C 48:673–678CrossRef Adabi M, Saber R, Faridi-Majidi R, Faridbod F (2015) Performance of electrodes synthesized with polyacrylonitrile-based carbon nanofibers for application in electrochemical sensors and biosensors. Mater Sci Eng, C 48:673–678CrossRef
Metadaten
Titel
Preparation and optimization of chitosan/polyethylene oxide nanofiber diameter using artificial neural networks
verfasst von
Najmeh Ketabchi
Majid Naghibzadeh
Mahdi Adabi
Seyedeh Sara Esnaashari
Reza Faridi-Majidi
Publikationsdatum
19.02.2016
Verlag
Springer London
Erschienen in
Neural Computing and Applications / Ausgabe 11/2017
Print ISSN: 0941-0643
Elektronische ISSN: 1433-3058
DOI
https://doi.org/10.1007/s00521-016-2212-0

Weitere Artikel der Ausgabe 11/2017

Neural Computing and Applications 11/2017 Zur Ausgabe