Skip to main content

2020 | OriginalPaper | Buchkapitel

3. Preparation of Graphene Based Nanocomposite Based on TPE

verfasst von : Abhijit Bandyopadhyay, Poulomi Dasgupta, Sayan Basak

Erschienen in: Engineering of Thermoplastic Elastomer with Graphene and Other Anisotropic Nanofillers

Verlag: Springer Singapore

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

In the year 1959, professor Richard Feynman prognosticated the propitious future of nanomaterials with his famous speech, saying, “There's Plenty of Room at the Bottom. I can't see exactly what would happen, but I can hardly doubt that when we have some control of the arrangement of things on a small scale, we will get an enormously greater range of possible properties that substances can have, and of different things that we can do.”

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Feynman, R.: There’s Plenty of Room at the Bottom. Annual meeting of American Physical Society, California Institute of Technology (1959) Feynman, R.: There’s Plenty of Room at the Bottom. Annual meeting of American Physical Society, California Institute of Technology (1959)
2.
Zurück zum Zitat Kroto, H.W., Heath, J.R., O’Brien, S.C., Curl, R.F., Smalley, R.E.: C60: Buckminsterfullerene. Nature 318(6042), 162–163 (1985)CrossRef Kroto, H.W., Heath, J.R., O’Brien, S.C., Curl, R.F., Smalley, R.E.: C60: Buckminsterfullerene. Nature 318(6042), 162–163 (1985)CrossRef
3.
Zurück zum Zitat Iijima, S.: Helical microtubules of graphitic carbon. Nature 354(6348), 56–58 (1991)CrossRef Iijima, S.: Helical microtubules of graphitic carbon. Nature 354(6348), 56–58 (1991)CrossRef
4.
Zurück zum Zitat Novoselov, K.S., Geim, A.K., Morozov, S.V., et al.: Electric field in atomically thin carbon films. Science 306(5696), 666–669 (2004) Novoselov, K.S., Geim, A.K., Morozov, S.V., et al.: Electric field in atomically thin carbon films. Science 306(5696), 666–669 (2004)
5.
Zurück zum Zitat Geim, A.K.: Graphene: status and prospects. Science 324(5934), 1530–1534 (2009)CrossRef Geim, A.K.: Graphene: status and prospects. Science 324(5934), 1530–1534 (2009)CrossRef
6.
Zurück zum Zitat Sur, U.K.: Graphene: a rising star on the horizon of materials science. Int. J. Electrochem., Article ID 237689 (2012) Sur, U.K.: Graphene: a rising star on the horizon of materials science. Int. J. Electrochem., Article ID 237689 (2012)
7.
Zurück zum Zitat Taghioskoui, M.: Trends in graphene research, Materials today, 2009, 12 (10) Taghioskoui, M.: Trends in graphene research, Materials today, 2009, 12 (10)
8.
Zurück zum Zitat Geim, A.K., Novoselov, K.S.: The rise of graphene. Nat. Mater. 6(3), 183–191 (2007)CrossRef Geim, A.K., Novoselov, K.S.: The rise of graphene. Nat. Mater. 6(3), 183–191 (2007)CrossRef
9.
Zurück zum Zitat Ren, W., Cheng, H.M.: The global growth of graphene. Nat. Nanotechnol. 9, 726–730 (2014)CrossRef Ren, W., Cheng, H.M.: The global growth of graphene. Nat. Nanotechnol. 9, 726–730 (2014)CrossRef
10.
Zurück zum Zitat Zhang, Y., Wu, S., Wen, Y.H., Zhu, Z.: Surface-passivation-induced metallic and magnetic properties of ZnO graphitic sheet. Phys. Lett. 96, 223113 (2010) Zhang, Y., Wu, S., Wen, Y.H., Zhu, Z.: Surface-passivation-induced metallic and magnetic properties of ZnO graphitic sheet. Phys. Lett. 96, 223113 (2010)
11.
Zurück zum Zitat Neto, A.H.C., Guinea, F., Peres, N.M.R., Novoselov, K.S., Geim, A.K.: The electronic properties of graphene. Rev. Mod. Phys. 81, 109–162 (2009)CrossRef Neto, A.H.C., Guinea, F., Peres, N.M.R., Novoselov, K.S., Geim, A.K.: The electronic properties of graphene. Rev. Mod. Phys. 81, 109–162 (2009)CrossRef
12.
Zurück zum Zitat Loh, K.P., Bao, Q., Anga, P.K., Yang, J.: The chemistry of graphene. J. Mater. Chem. 20, 2277–2289 (2010)CrossRef Loh, K.P., Bao, Q., Anga, P.K., Yang, J.: The chemistry of graphene. J. Mater. Chem. 20, 2277–2289 (2010)CrossRef
13.
Zurück zum Zitat Bonaccorso, F., Sun, Z., Hasan, T., Ferrari, A.C.: Graphene photonics and optoelectronics. Nat. Photonics 4(9), 611–622 (2010)CrossRef Bonaccorso, F., Sun, Z., Hasan, T., Ferrari, A.C.: Graphene photonics and optoelectronics. Nat. Photonics 4(9), 611–622 (2010)CrossRef
14.
Zurück zum Zitat Schwierz, F.: Graphene transistors. Nat. Nanotechnol. 5(7), 487–496 (2010)CrossRef Schwierz, F.: Graphene transistors. Nat. Nanotechnol. 5(7), 487–496 (2010)CrossRef
15.
Zurück zum Zitat Ni, Z., Wang, Y., Yu, T., Shen, Z.: Raman spectroscopy and imaging of graphene. Nano Res 1, 273–291 (2008)CrossRef Ni, Z., Wang, Y., Yu, T., Shen, Z.: Raman spectroscopy and imaging of graphene. Nano Res 1, 273–291 (2008)CrossRef
16.
Zurück zum Zitat Avouris, P.: Graphene: electronic and photonic properties and devices. Nano Lett. 10(11), 4285–4294 (2010)CrossRef Avouris, P.: Graphene: electronic and photonic properties and devices. Nano Lett. 10(11), 4285–4294 (2010)CrossRef
17.
Zurück zum Zitat Giannazzo, F., Raineri, V., Rimini, E.: Transport properties of graphene with nanoscale lateral resolution. Scann. Probe Microscopy Nanosci. Nanotechnol. 2, 247–258 (2011)CrossRef Giannazzo, F., Raineri, V., Rimini, E.: Transport properties of graphene with nanoscale lateral resolution. Scann. Probe Microscopy Nanosci. Nanotechnol. 2, 247–258 (2011)CrossRef
18.
Zurück zum Zitat Aïssa, B., Memon, N.K., Ali, A., Khraisheh, M.K.: Recent progress in the growth and applications of graphene as a smart material: a review. Front. Mater. 2, Article 58 (2015) Aïssa, B., Memon, N.K., Ali, A., Khraisheh, M.K.: Recent progress in the growth and applications of graphene as a smart material: a review. Front. Mater. 2, Article 58 (2015)
21.
Zurück zum Zitat Kesong, Hu., Kulkarni, D.D., Choi, I., Tsukruk, V.V.: Graphene-polymer nanocomposites for structuraland functional applications. Prog. Polym. Sci. 39, 1934–1972 (2014)CrossRef Kesong, Hu., Kulkarni, D.D., Choi, I., Tsukruk, V.V.: Graphene-polymer nanocomposites for structuraland functional applications. Prog. Polym. Sci. 39, 1934–1972 (2014)CrossRef
22.
Zurück zum Zitat Choi, W., Lahiri, I., Seelaboyina, R., Kang, Y.S.: Synthesis of graphene and its applications: a review. Crit. Rev. Solid State Mater. Sci. 35(1), 52–71 (2010)CrossRef Choi, W., Lahiri, I., Seelaboyina, R., Kang, Y.S.: Synthesis of graphene and its applications: a review. Crit. Rev. Solid State Mater. Sci. 35(1), 52–71 (2010)CrossRef
23.
Zurück zum Zitat Novoselov, K.S., Jiang, Z., Zhang, Y., et al.: Room-temperature quantum hall effect in graphene. Science 315(5817), 1379 (2007)CrossRef Novoselov, K.S., Jiang, Z., Zhang, Y., et al.: Room-temperature quantum hall effect in graphene. Science 315(5817), 1379 (2007)CrossRef
24.
Zurück zum Zitat Leenaerts, O., et al.: Appl. Phys. Lett., 93 (2008) Leenaerts, O., et al.: Appl. Phys. Lett., 93 (2008)
25.
Zurück zum Zitat Britnell, L., Ribeiro, R.M., Eckmann, A., Jalil, R., Belle, B.D., Mishchenko, A., Kim, Y.J., Gorbachhev, R.V., Georgiou, T., Morozov, S.V., Grigorenko, A.N., Geim, A.K., Casiraghi, C., Castro Meto, A.H., Novoselov, K.S.: Strong light-matter interactions in heterostructures of atomically thin films. Science 340, 1311–1314 (2013)CrossRef Britnell, L., Ribeiro, R.M., Eckmann, A., Jalil, R., Belle, B.D., Mishchenko, A., Kim, Y.J., Gorbachhev, R.V., Georgiou, T., Morozov, S.V., Grigorenko, A.N., Geim, A.K., Casiraghi, C., Castro Meto, A.H., Novoselov, K.S.: Strong light-matter interactions in heterostructures of atomically thin films. Science 340, 1311–1314 (2013)CrossRef
26.
Zurück zum Zitat El-Kady, M.F., Kaner, R.B.: Scalable fabrication of high-power graphenemicro-supercapacitors for flexible and on-chip energy storage. Nat. Commun. 4, 1475/1–1475 (2013) El-Kady, M.F., Kaner, R.B.: Scalable fabrication of high-power graphenemicro-supercapacitors for flexible and on-chip energy storage. Nat. Commun. 4, 1475/1–1475 (2013)
27.
Zurück zum Zitat Kim, K.S., Zhao, Y., Jang, H., Lee, S.Y., Kim, J.M., Kim, K.S., Ahn, J.H., Kim, P., Choi, J.Y., Hong, B.H.: Large-scale pattern growth of graphene films for stretchable transparent electrodes. Nature 457, 706–710 (2009) Kim, K.S., Zhao, Y., Jang, H., Lee, S.Y., Kim, J.M., Kim, K.S., Ahn, J.H., Kim, P., Choi, J.Y., Hong, B.H.: Large-scale pattern growth of graphene films for stretchable transparent electrodes. Nature 457, 706–710 (2009)
28.
Zurück zum Zitat Tetsuka, H., Asahi, R., Nagoya, A., Okamoto, K., Tajima, I., Ohta, R., Okamoto, A.: Optically tunable amino-functionalized graphene quantum dots. Adv. Mater. 24, 5333–5338 (2012)CrossRef Tetsuka, H., Asahi, R., Nagoya, A., Okamoto, K., Tajima, I., Ohta, R., Okamoto, A.: Optically tunable amino-functionalized graphene quantum dots. Adv. Mater. 24, 5333–5338 (2012)CrossRef
29.
Zurück zum Zitat Hu, K., Gupta, M.K., Kulkarni, D.D., Tsukruk, V.V.: Ultra-robustgraphene oxide-silk fibroin nanocomposite membranes. Adv. Mater. 25, 2301–2307 (2013)CrossRef Hu, K., Gupta, M.K., Kulkarni, D.D., Tsukruk, V.V.: Ultra-robustgraphene oxide-silk fibroin nanocomposite membranes. Adv. Mater. 25, 2301–2307 (2013)CrossRef
30.
Zurück zum Zitat Mannoor, M.S., Tao, H., Clayton, J.D., Sengupta, A., Kaplan, D.L., Naik, R.R., Verma, N., Omenetto, F.G., McAlpine, M.C.: Graphene-basedwireless bacteria detection on tooth enamel. Nat. Commun. 3, 763/1–763 (2012) Mannoor, M.S., Tao, H., Clayton, J.D., Sengupta, A., Kaplan, D.L., Naik, R.R., Verma, N., Omenetto, F.G., McAlpine, M.C.: Graphene-basedwireless bacteria detection on tooth enamel. Nat. Commun. 3, 763/1–763 (2012)
31.
Zurück zum Zitat Guo, W., Cheng, C., Wu, Y., Jiang, Y., Gao, J., Li, D., Jiang, L.: Bio-inspired two-dimensional nanofluidic generators based on a layered graphene hydrogel membrane. Adv Mater 25, 6064–6068 (2013)CrossRef Guo, W., Cheng, C., Wu, Y., Jiang, Y., Gao, J., Li, D., Jiang, L.: Bio-inspired two-dimensional nanofluidic generators based on a layered graphene hydrogel membrane. Adv Mater 25, 6064–6068 (2013)CrossRef
32.
Zurück zum Zitat Shahil, K.M.F., Balandin, A.A.: Thermal properties of graphene and mul-tilayer graphene: applications in thermal interface materials. Solid State Commun 152, 1331–1340 (2012)CrossRef Shahil, K.M.F., Balandin, A.A.: Thermal properties of graphene and mul-tilayer graphene: applications in thermal interface materials. Solid State Commun 152, 1331–1340 (2012)CrossRef
33.
Zurück zum Zitat Oliveira, M., Machado, A.V.: Preparation of polymer-based nanocomposites by different routes. In: Wang, X. (ed.) Nanocomposites: Synthesis, Characterization and Applications, p. 21. NOVA Publishers Oliveira, M., Machado, A.V.: Preparation of polymer-based nanocomposites by different routes. In: Wang, X. (ed.) Nanocomposites: Synthesis, Characterization and Applications, p. 21. NOVA Publishers
34.
Zurück zum Zitat Judeinstein, P., Sanchez, C.: Hybrid organic–inorganic materials: a land of multidisciplinarity. J. Mater. Chem. 6, 511–525 (1996)CrossRef Judeinstein, P., Sanchez, C.: Hybrid organic–inorganic materials: a land of multidisciplinarity. J. Mater. Chem. 6, 511–525 (1996)CrossRef
35.
Zurück zum Zitat Rong, M.Z., Zhang, M.Q., Zheng, Y.X., Zeng, H.M., Friedrich, K.: Improvement of tensile properties of nano-SiO2/PP composites in relation to percolation mechanism. Polymer 42, 3301–3304 (2001)CrossRef Rong, M.Z., Zhang, M.Q., Zheng, Y.X., Zeng, H.M., Friedrich, K.: Improvement of tensile properties of nano-SiO2/PP composites in relation to percolation mechanism. Polymer 42, 3301–3304 (2001)CrossRef
36.
Zurück zum Zitat Xu, C., Ohno, K., Ladmiral, V., Composto, R.J.: Dispersion of polymer-grafted magnetic nanoparticles in homopolymers and block copolymers. Polymer 49, 3568–3577 (2008)CrossRef Xu, C., Ohno, K., Ladmiral, V., Composto, R.J.: Dispersion of polymer-grafted magnetic nanoparticles in homopolymers and block copolymers. Polymer 49, 3568–3577 (2008)CrossRef
37.
Zurück zum Zitat Liu, X., Wu, Q.: PP/clay nanocomposites prepared by grafting-melt Intercalation. Polymer 42, 10013–10019 (2001)CrossRef Liu, X., Wu, Q.: PP/clay nanocomposites prepared by grafting-melt Intercalation. Polymer 42, 10013–10019 (2001)CrossRef
38.
Zurück zum Zitat Akpan, E.I., Shen, X., Wetzel, B., Friedrich, K.: Design and synthesis of polymer nanocomposites. In: Polymer Composites with Functionalized Nanoparticles, pp. 47–83. Elsevier (2019) Akpan, E.I., Shen, X., Wetzel, B., Friedrich, K.: Design and synthesis of polymer nanocomposites. In: Polymer Composites with Functionalized Nanoparticles, pp. 47–83. Elsevier (2019)
39.
Zurück zum Zitat Yang, F., Ou, Y.,Yu, Z.: Polyamide 6/silica nanocomposites prepared by in situ polymerization. State Key Laboratory of Engineering Plastics, Institute of Chemistry, Chinese Academy of Sciences, Beijing, People’s Republic of China (1998) Yang, F., Ou, Y.,Yu, Z.: Polyamide 6/silica nanocomposites prepared by in situ polymerization. State Key Laboratory of Engineering Plastics, Institute of Chemistry, Chinese Academy of Sciences, Beijing, People’s Republic of China (1998)
40.
Zurück zum Zitat Alexandre, M., Dubois, P.: Polymer-layered silicate nanocomposites: preparation, properties and uses of a new class of materials. Mater. Sci. Eng. 28(1–2), 1–63 (2000)CrossRef Alexandre, M., Dubois, P.: Polymer-layered silicate nanocomposites: preparation, properties and uses of a new class of materials. Mater. Sci. Eng. 28(1–2), 1–63 (2000)CrossRef
41.
Zurück zum Zitat Reddy, R.J.: Preparation, characterization and properties of injection molded graphene nanocomposites, Master’s thesis, Mechanical Engineering, Wichita State University, Wichita, Kansas, USA (2010) Reddy, R.J.: Preparation, characterization and properties of injection molded graphene nanocomposites, Master’s thesis, Mechanical Engineering, Wichita State University, Wichita, Kansas, USA (2010)
42.
Zurück zum Zitat Ravichandran, K., Praseetha, P.K., Arun, T., Gobalakrishnan, S.: Synthesis of nanocomposites. In: Synthesis of Inorganic Nanomaterials. Elsevier (2018) Ravichandran, K., Praseetha, P.K., Arun, T., Gobalakrishnan, S.: Synthesis of nanocomposites. In: Synthesis of Inorganic Nanomaterials. Elsevier (2018)
43.
Zurück zum Zitat Fawaz, J., Mittal, V.: Synthesis of polymer nanocomposites: review of various techniques. In: Mittal, V. (ed.) Synthesis Techniques for Polymer Nanocomposites. Wiley (2015) Fawaz, J., Mittal, V.: Synthesis of polymer nanocomposites: review of various techniques. In: Mittal, V. (ed.) Synthesis Techniques for Polymer Nanocomposites. Wiley (2015)
44.
Zurück zum Zitat Beyer, G.: Nano composites: a new class of flame retardants for polymers. Plastics Additives Compound., 22–28 (2002) Beyer, G.: Nano composites: a new class of flame retardants for polymers. Plastics Additives Compound., 22–28 (2002)
45.
Zurück zum Zitat Rane, A.V., Kanny, K., Abitha, V.K., Patil, S.S., Thomas, S.: Clay-polymer composites: design of clay polymer nanocomposite by mixing. In: Clay-Polymer Nanocomposites. Elsevier (2017) Rane, A.V., Kanny, K., Abitha, V.K., Patil, S.S., Thomas, S.: Clay-polymer composites: design of clay polymer nanocomposite by mixing. In: Clay-Polymer Nanocomposites. Elsevier (2017)
46.
Zurück zum Zitat Verma, D., Goh, K.L.: Functionalized graphene-based nanocomposites for energy applications. In: Functionalized Graphene Nanocomposites and Their Derivatives. Elsevier (2019) Verma, D., Goh, K.L.: Functionalized graphene-based nanocomposites for energy applications. In: Functionalized Graphene Nanocomposites and Their Derivatives. Elsevier (2019)
47.
Zurück zum Zitat Rath, T., Li, Y.: Nanocomposites based on polystyrene-b-poly(ethylene-r-butylene)-b-polystyrene and exfoliated graphite nanoplates: effect of nanoplatelet loading on morphology and mechanical properties. Composites: Part A 42, 1995–2002 (2011) Rath, T., Li, Y.: Nanocomposites based on polystyrene-b-poly(ethylene-r-butylene)-b-polystyrene and exfoliated graphite nanoplates: effect of nanoplatelet loading on morphology and mechanical properties. Composites: Part A 42, 1995–2002 (2011)
48.
Zurück zum Zitat Haghnegahdar, M., Naderi, G.,Ghoreishy, M.H.R.: Electrical and thermal properties of thermoplastic elastomer nanocomposite based on polypropylene/ethylene propylene diene monomer/graphene. Soft Mater. (2016) Haghnegahdar, M., Naderi, G.,Ghoreishy, M.H.R.: Electrical and thermal properties of thermoplastic elastomer nanocomposite based on polypropylene/ethylene propylene diene monomer/graphene. Soft Mater. (2016)
49.
Zurück zum Zitat Tarawneh, M.A., Yu, L.J., Tarawni, M.A., Ahmad, S.H., Al-Banawi1, O., Batiha, M.A.: High performance thermoplastic elastomer (TPE) nanocomposite based on graphene nanoplates (GNPs). World J. Eng. 12, 437–442 (2015) Tarawneh, M.A., Yu, L.J., Tarawni, M.A., Ahmad, S.H., Al-Banawi1, O., Batiha, M.A.: High performance thermoplastic elastomer (TPE) nanocomposite based on graphene nanoplates (GNPs). World J. Eng. 12, 437–442 (2015)
50.
Zurück zum Zitat Amin, M.: Methods for preparation of nano-composites for outdoor insulation applications. Rev. Adv. Mater. Sci. 34, 173–184 (2013) Amin, M.: Methods for preparation of nano-composites for outdoor insulation applications. Rev. Adv. Mater. Sci. 34, 173–184 (2013)
51.
Zurück zum Zitat Pavlidou, S., Papaspyrides, C.D.: A review on polymer-layered silicate nanocomposites. Prog. Polym. Sci. 33, 1119–1198 (2008)CrossRef Pavlidou, S., Papaspyrides, C.D.: A review on polymer-layered silicate nanocomposites. Prog. Polym. Sci. 33, 1119–1198 (2008)CrossRef
52.
Zurück zum Zitat Huan, G., Che, S., Tang, S., Gao, J.: A novel intumescent flame retardant-functionalized graphene: nanocomposite synthesis, characterization, and flammability properties. Mater. Chem. Phys. 135, 938–947 (2012)CrossRef Huan, G., Che, S., Tang, S., Gao, J.: A novel intumescent flame retardant-functionalized graphene: nanocomposite synthesis, characterization, and flammability properties. Mater. Chem. Phys. 135, 938–947 (2012)CrossRef
53.
Zurück zum Zitat Kuila, T., Khanra, P., Mishra, A.K., Kim, N.H., Lee, J.H.: Functionalized-graphene/ethylene vinyl acetate co-polymer composites for improved mechanical and thermal properties. Poly. Test. 31, 282–289 (2012) Kuila, T., Khanra, P., Mishra, A.K., Kim, N.H., Lee, J.H.: Functionalized-graphene/ethylene vinyl acetate co-polymer composites for improved mechanical and thermal properties. Poly. Test. 31, 282–289 (2012)
54.
Zurück zum Zitat Nawaz, K., Khan, U., Ul-Haq, N., May, P., O’Neill, A., Coleman, J.N.: Observation of mechanical percolation in functionalized graphene oxide/elastomer composites. Carbon 50, 4489–4494 (2012)CrossRef Nawaz, K., Khan, U., Ul-Haq, N., May, P., O’Neill, A., Coleman, J.N.: Observation of mechanical percolation in functionalized graphene oxide/elastomer composites. Carbon 50, 4489–4494 (2012)CrossRef
55.
Zurück zum Zitat Liu, H., Li, Y., Dai, K., Zheng, G., Liu, C., Shen, C., Yan, X., Guo, J., Guo, Z.: Electrically conductive thermoplastic elastomer nanocomposites at ultralow graphene loading levels for strain sensor applications. J. Mater. Chem. C (2015) Liu, H., Li, Y., Dai, K., Zheng, G., Liu, C., Shen, C., Yan, X., Guo, J., Guo, Z.: Electrically conductive thermoplastic elastomer nanocomposites at ultralow graphene loading levels for strain sensor applications. J. Mater. Chem. C (2015)
56.
Zurück zum Zitat Mittal, V.: Polymer layered silicate nanocomposites: a review. Materials 2, 992–1057 (2009)CrossRef Mittal, V.: Polymer layered silicate nanocomposites: a review. Materials 2, 992–1057 (2009)CrossRef
57.
Zurück zum Zitat Zheng, W., Lu, X., Wong, S.C.: Electrical and mechanical properties of expanded graphite-reinforced highdensity polyethylene. Appl Polym Sci J 91, 2781 (2004)CrossRef Zheng, W., Lu, X., Wong, S.C.: Electrical and mechanical properties of expanded graphite-reinforced highdensity polyethylene. Appl Polym Sci J 91, 2781 (2004)CrossRef
58.
Zurück zum Zitat Lianga, J., Wanga, Y., Huanga, Y., Maa, Y., Liua, Z., Caib, J., Zhangb, C., Gaob, H., Chena, Y.: Electromagnetic interference shielding of graphene/epoxy composite. Carb J 47, 922 (2009)CrossRef Lianga, J., Wanga, Y., Huanga, Y., Maa, Y., Liua, Z., Caib, J., Zhangb, C., Gaob, H., Chena, Y.: Electromagnetic interference shielding of graphene/epoxy composite. Carb J 47, 922 (2009)CrossRef
59.
Zurück zum Zitat Park, S., Rouff, S.: Chemical methods for the production of graphenes. Nat Nanotech J 4, 217 (2009)CrossRef Park, S., Rouff, S.: Chemical methods for the production of graphenes. Nat Nanotech J 4, 217 (2009)CrossRef
60.
Zurück zum Zitat Usuki, A., Kojima, Y., Kawasumi, M., Okada, A., Fukushima, Y., Kurauchi, T., Kamigaito, O.: Synthesis of nylon 6-clay hybrid. J. Mater. Res. 8(5), 1179–1184 (1993)CrossRef Usuki, A., Kojima, Y., Kawasumi, M., Okada, A., Fukushima, Y., Kurauchi, T., Kamigaito, O.: Synthesis of nylon 6-clay hybrid. J. Mater. Res. 8(5), 1179–1184 (1993)CrossRef
61.
Zurück zum Zitat Paszkiewicz, S., Szymczyk, A., Sui, X.M., Wagner, H.D., Linares, A., Ezquerra, T.A., Rosłaniec, Z.: Synergetic effect of single-walled carbon nanotubes (SWCNT) and graphene nanoplatelets (GNP) in electrically conductive PTT-block-PTMO hybrid nanocomposites prepared by in situ polymerization. Compos. Sci. Technol. (2015) Paszkiewicz, S., Szymczyk, A., Sui, X.M., Wagner, H.D., Linares, A., Ezquerra, T.A., Rosłaniec, Z.: Synergetic effect of single-walled carbon nanotubes (SWCNT) and graphene nanoplatelets (GNP) in electrically conductive PTT-block-PTMO hybrid nanocomposites prepared by in situ polymerization. Compos. Sci. Technol. (2015)
62.
Zurück zum Zitat Wang, X., Yuan, Hu., Song, L., Yang, H., Xinga, W., Hongdian, Lu.: In situ polymerization of graphene nanosheets and polyurethane with enhanced mechanical and thermal properties. J. Mater. Chem. 21, 4222 (2011)CrossRef Wang, X., Yuan, Hu., Song, L., Yang, H., Xinga, W., Hongdian, Lu.: In situ polymerization of graphene nanosheets and polyurethane with enhanced mechanical and thermal properties. J. Mater. Chem. 21, 4222 (2011)CrossRef
63.
Zurück zum Zitat Backes, C., Higgins, T.M., Kelly, A., Boland, C., Harvey, A., Hanlon, D., et al.: Chem. Mater. 29, 243–255 (2017)CrossRef Backes, C., Higgins, T.M., Kelly, A., Boland, C., Harvey, A., Hanlon, D., et al.: Chem. Mater. 29, 243–255 (2017)CrossRef
64.
65.
Zurück zum Zitat Wengeler, R., Nirschl, H.: J. Colloid Interface Sci. 306, 262–273 (2007)CrossRef Wengeler, R., Nirschl, H.: J. Colloid Interface Sci. 306, 262–273 (2007)CrossRef
66.
Zurück zum Zitat Yuan, B., Bao, C., Qian, X., Jiang, S., Wen, P.,Xing, W., Song, L., Liew, K.M., Hu, Y.: Synergetic dispersion effect of graphene nanohybrid on the thermal stability and mechanical properties of ethylene vinyl acetate copolymer nanocomposite. Ind. Eng. Chem. Res. 53, 1143−1149 (2014) Yuan, B., Bao, C., Qian, X., Jiang, S., Wen, P.,Xing, W., Song, L., Liew, K.M., Hu, Y.: Synergetic dispersion effect of graphene nanohybrid on the thermal stability and mechanical properties of ethylene vinyl acetate copolymer nanocomposite. Ind. Eng. Chem. Res. 53, 1143−1149 (2014)
67.
Zurück zum Zitat Tayebia, M., Ahmad Ramazani, S., Hamed Mosaviana, M.T., Tayyebi, A.: LDPE/EVA/graphene nanocomposites with enhanced mechanical and gas permeability properties. Polym. Adv. Technol. 26, 1083–1090 (2015) Tayebia, M., Ahmad Ramazani, S., Hamed Mosaviana, M.T., Tayyebi, A.: LDPE/EVA/graphene nanocomposites with enhanced mechanical and gas permeability properties. Polym. Adv. Technol. 26, 1083–1090 (2015)
68.
Zurück zum Zitat Kim, H., Miura, Y., Macosko, C.W.: Graphene/polyurethane nanocomposites for improved gas barrier and electrical conductivity. Chem. Mater. 22, 3441–3450 (2010)CrossRef Kim, H., Miura, Y., Macosko, C.W.: Graphene/polyurethane nanocomposites for improved gas barrier and electrical conductivity. Chem. Mater. 22, 3441–3450 (2010)CrossRef
69.
Zurück zum Zitat Liu, M., Papageorgiou, D.G., Li, S., Lin, K., Kinloch, I.A., Young, R.J.: Micromechanics of reinforcement of a graphene-based thermoplastic elastomer nanocomposite. Compos. A Appl. Sci. Manuf. 110, 84–92 (2018)CrossRef Liu, M., Papageorgiou, D.G., Li, S., Lin, K., Kinloch, I.A., Young, R.J.: Micromechanics of reinforcement of a graphene-based thermoplastic elastomer nanocomposite. Compos. A Appl. Sci. Manuf. 110, 84–92 (2018)CrossRef
70.
Zurück zum Zitat Tarawneh, M., Yu, L.-J., Al-Tarawni, A., Ahmad, M., Al-Banawi, S., Batiha, M.O.: High performance thermoplastic elastomer (TPE) nanocomposite based on graphene nanoplates (GNPs). World J. Eng. 12, 437–442 (2015) Tarawneh, M., Yu, L.-J., Al-Tarawni, A., Ahmad, M., Al-Banawi, S., Batiha, M.O.: High performance thermoplastic elastomer (TPE) nanocomposite based on graphene nanoplates (GNPs). World J. Eng. 12, 437–442 (2015)
71.
Zurück zum Zitat Park, N.H., Kim, D.H., Kim, K.Y., Lim, D.Y., Ham, H.: Electrical properties of novel polyolefin based thermoplastic elastomer and graphene nanocomposites. Fibers Polym. 14(12), 2117–2121 (2013)CrossRef Park, N.H., Kim, D.H., Kim, K.Y., Lim, D.Y., Ham, H.: Electrical properties of novel polyolefin based thermoplastic elastomer and graphene nanocomposites. Fibers Polym. 14(12), 2117–2121 (2013)CrossRef
72.
Zurück zum Zitat Liu, H., Li, Y., Dai, K., Zheng, G., Liu, C., Shen, C., Guo, Z.: Electrically conductive thermoplastic elastomer nanocomposites at ultralow graphene loading levels for strain sensor applications. J. Mater. Chem. C 4(1), 157–166 (2016)CrossRef Liu, H., Li, Y., Dai, K., Zheng, G., Liu, C., Shen, C., Guo, Z.: Electrically conductive thermoplastic elastomer nanocomposites at ultralow graphene loading levels for strain sensor applications. J. Mater. Chem. C 4(1), 157–166 (2016)CrossRef
Metadaten
Titel
Preparation of Graphene Based Nanocomposite Based on TPE
verfasst von
Abhijit Bandyopadhyay
Poulomi Dasgupta
Sayan Basak
Copyright-Jahr
2020
Verlag
Springer Singapore
DOI
https://doi.org/10.1007/978-981-15-9085-6_3

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.