Skip to main content

2024 | OriginalPaper | Buchkapitel

19. Present and the Future of Mechanically Alloyed Materials

verfasst von : M. Kalyan Phani, D. Narsimhachary

Erschienen in: Mechanically Alloyed Novel Materials

Verlag: Springer Nature Singapore

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Mechanically alloyed materials have emerged as a transformative technology in materials science, revolutionizing the landscape of advanced materials with their unique and tailorable properties. The current chapter delves into the present applications of mechanically alloyed materials, emphasizing their widespread use in industries such as aerospace, automotive, electronics, and energy. These materials exhibit exceptional mechanical, thermal, and electrical characteristics, making them invaluable for numerous high-performance applications. The present research is focused on designing the microstructure of the alloys by optimizing the mechanical alloying process parameters to achieve the desired mechanical properties, such as increased hardness, wear resistance, and corrosion resistance. The chapter also explores the exciting prospects for mechanically alloyed materials in the future. One of the primary directions of research is the development of lightweight, high-strength materials for the transportation industry. These materials have the potential to significantly reduce fuel consumption and carbon emissions in various modes of transportation. Furthermore, the integration of mechanically alloyed materials in 3D printing and additive manufacturing processes is presented as a pivotal advancement, allowing for the fabrication of complex components with precisely tailored properties, thus revolutionizing the manufacturing sector. In the energy sector, the book chapter discusses the role of mechanically alloyed materials in advanced battery and supercapacitor applications. Their enhanced electrical conductivity and durability are instrumental in improving the efficiency and lifespan of energy storage systems. Additionally, the exploration of high-temperature-resistant materials for gas turbine engines and nuclear reactors demonstrates their potential to reshape the energy landscape. These materials, with their versatile properties and wide-ranging applications, are a focal point of materials science research. As technology advances, the synthesis and characterization of these materials are expected to become more efficient, enabling the creation of innovative solutions to address the evolving challenges of the twenty-first century.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Benjamin, J.S., Volin, T.E.: The fabrication of aluminum-transition metal alloys by mechanical alloying. J. Appl. Phys. 37(7), 2980–2982 (1966) Benjamin, J.S., Volin, T.E.: The fabrication of aluminum-transition metal alloys by mechanical alloying. J. Appl. Phys. 37(7), 2980–2982 (1966)
2.
Zurück zum Zitat Suryanarayana, C.: Mechanical alloying and milling. Prog. Mater Sci. 46(1–2), 1–184 (2001)CrossRef Suryanarayana, C.: Mechanical alloying and milling. Prog. Mater Sci. 46(1–2), 1–184 (2001)CrossRef
3.
Zurück zum Zitat Gleiter, H.: Nanocrystalline materials. Prog. Mater Sci. 33(4), 223–315 (1989)CrossRef Gleiter, H.: Nanocrystalline materials. Prog. Mater Sci. 33(4), 223–315 (1989)CrossRef
4.
Zurück zum Zitat Löffler, J.F.: Bulk metallic glasses. Mater. Sci. Eng., A 485(1–2), 1–14 (2008) Löffler, J.F.: Bulk metallic glasses. Mater. Sci. Eng., A 485(1–2), 1–14 (2008)
5.
Zurück zum Zitat Ma, E., Atzmon, M.: Nanostructured Materials: processing, Properties and Potential Applications. Elsevier (2010) Ma, E., Atzmon, M.: Nanostructured Materials: processing, Properties and Potential Applications. Elsevier (2010)
6.
Zurück zum Zitat Suryanarayana, C., Ivanov, E.: Future directions of mechanical alloying. Mater. Sci. Eng. A 573, 55–59 (2013) Suryanarayana, C., Ivanov, E.: Future directions of mechanical alloying. Mater. Sci. Eng. A 573, 55–59 (2013)
7.
Zurück zum Zitat Bala, H., Leparoux, M.: Mechanical alloying: a novel technique to synthesize advanced materials for aerospace applications. Procedia Struct. Integr. 2, 1365–1372 (2016) Bala, H., Leparoux, M.: Mechanical alloying: a novel technique to synthesize advanced materials for aerospace applications. Procedia Struct. Integr. 2, 1365–1372 (2016)
8.
Zurück zum Zitat Simoes, S., Santos, T.: Emerging trends in mechanical alloying and milling. Mater. Today: Proc. 17, 508–515 (2019) Simoes, S., Santos, T.: Emerging trends in mechanical alloying and milling. Mater. Today: Proc. 17, 508–515 (2019)
9.
Zurück zum Zitat Zarei-Hanzaki, A., et al.: Recent advances in mechanical alloying, its applications and challenges: a review. J. Alloy. Compd. 717, 271–284 (2017) Zarei-Hanzaki, A., et al.: Recent advances in mechanical alloying, its applications and challenges: a review. J. Alloy. Compd. 717, 271–284 (2017)
11.
Zurück zum Zitat Chookaew, S., Ngamjarurojana, A.: Advances in mechanical alloying and milling. Mater. Sci. Forum 783–786, 1791–1796 (2014) Chookaew, S., Ngamjarurojana, A.: Advances in mechanical alloying and milling. Mater. Sci. Forum 783–786, 1791–1796 (2014)
12.
Zurück zum Zitat Mittemeijer, E.J., Somers, M.A.J.: Thermochemical Surface Engineering of Steels: improving Materials Performance. Elsevier (2013) Mittemeijer, E.J., Somers, M.A.J.: Thermochemical Surface Engineering of Steels: improving Materials Performance. Elsevier (2013)
13.
Zurück zum Zitat Gu, L., Tan, Y.: Mechanical alloying and milling. In: Encyclopedia of Renewable and Sustainable Materials, vol. 4, pp. 580–590. Elsevier (2017) Gu, L., Tan, Y.: Mechanical alloying and milling. In: Encyclopedia of Renewable and Sustainable Materials, vol. 4, pp. 580–590. Elsevier (2017)
14.
Zurück zum Zitat Volek, A., Kudlacek, J.: Advances in mechanical alloying: technological process and perspective. Mater. Today: Proc. 4(11), 11858–11866 (2017) Volek, A., Kudlacek, J.: Advances in mechanical alloying: technological process and perspective. Mater. Today: Proc. 4(11), 11858–11866 (2017)
15.
Zurück zum Zitat Oghbaei, M., Emami, Z.: Mechanical alloying as a solid state processing technique for the synthesis of advanced materials. J. Alloy. Compd. 629, 238–249 (2015) Oghbaei, M., Emami, Z.: Mechanical alloying as a solid state processing technique for the synthesis of advanced materials. J. Alloy. Compd. 629, 238–249 (2015)
16.
Zurück zum Zitat Leszczyńska-Sejda, K.: The future of mechanical alloying. Arch. Mater. Sci. Eng. 74(2), 90–99 (2015) Leszczyńska-Sejda, K.: The future of mechanical alloying. Arch. Mater. Sci. Eng. 74(2), 90–99 (2015)
17.
Zurück zum Zitat Bala, H., et al.: Mechanical alloying: a promising route to produce high-strength aluminum alloys for aerospace applications. Mater. Des. 142, 34–45 (2018) Bala, H., et al.: Mechanical alloying: a promising route to produce high-strength aluminum alloys for aerospace applications. Mater. Des. 142, 34–45 (2018)
18.
Zurück zum Zitat Adimule, V., Wei, P.S., Tanaka, M., Shashanka, R.: Synthesis and Modifications of Materials and its Properties, pp. 1–134 (2022) Adimule, V., Wei, P.S., Tanaka, M., Shashanka, R.: Synthesis and Modifications of Materials and its Properties, pp. 1–134 (2022)
19.
Zurück zum Zitat Zarei-Hanzaki, A., Eskandari, M.: Mechanical alloying and milling: a review of powder and grain surface effects. Powder Technol. 287, 3–13 (2015) Zarei-Hanzaki, A., Eskandari, M.: Mechanical alloying and milling: a review of powder and grain surface effects. Powder Technol. 287, 3–13 (2015)
20.
Zurück zum Zitat Zhang, Y., Yu, H.: Mechanical alloying: recent developments and future prospects. J. Mater. Res. 30(11), 1501–1518 (2015) Zhang, Y., Yu, H.: Mechanical alloying: recent developments and future prospects. J. Mater. Res. 30(11), 1501–1518 (2015)
21.
Zurück zum Zitat Amiri, S., et al.: Mechanical alloying: a versatile technique to synthesize advanced materials for energy and environmental applications. Sustain. Mater. Technol. 15, 1–12 (2018) Amiri, S., et al.: Mechanical alloying: a versatile technique to synthesize advanced materials for energy and environmental applications. Sustain. Mater. Technol. 15, 1–12 (2018)
22.
Zurück zum Zitat Talha, M., Ghasemi, A.: Mechanical alloying and advanced materials in aerospace industry. In: Proceedings of the International Conference on Mechanical, Aeronautical and Automotive Engineering (ICMAAE), pp. 1–7 (2017) Talha, M., Ghasemi, A.: Mechanical alloying and advanced materials in aerospace industry. In: Proceedings of the International Conference on Mechanical, Aeronautical and Automotive Engineering (ICMAAE), pp. 1–7 (2017)
23.
Zurück zum Zitat Bala, H., Maleque, M.A.: Mechanical alloying: a promising route to synthesize high-performance aerospace materials. Mater. Des. 83, 768–779 (2015) Bala, H., Maleque, M.A.: Mechanical alloying: a promising route to synthesize high-performance aerospace materials. Mater. Des. 83, 768–779 (2015)
24.
Zurück zum Zitat Guo, X., et al.: Recent advancements in aerospace materials and manufacturing processes. Mater. Des. 159, 1–23 (2018) Guo, X., et al.: Recent advancements in aerospace materials and manufacturing processes. Mater. Des. 159, 1–23 (2018)
25.
Zurück zum Zitat Ghasemi, A., Talha, M.: Advanced materials in aerospace industry: a comprehensive review. J. Aerosp. Eng. 32(3), 04019045 (2019) Ghasemi, A., Talha, M.: Advanced materials in aerospace industry: a comprehensive review. J. Aerosp. Eng. 32(3), 04019045 (2019)
26.
Zurück zum Zitat Leszczyńska-Sejda, K., Bojar, Z.: Advanced materials for aerospace applications: a review. Mater. Sci. Eng. A 701, 140–149 (2017) Leszczyńska-Sejda, K., Bojar, Z.: Advanced materials for aerospace applications: a review. Mater. Sci. Eng. A 701, 140–149 (2017)
27.
Zurück zum Zitat Simões, S., Santos, T.: Recent advances in the application of mechanical alloying for aerospace materials. J. Aerosp. Technol. Manag. 7(2), 127–136 (2015) Simões, S., Santos, T.: Recent advances in the application of mechanical alloying for aerospace materials. J. Aerosp. Technol. Manag. 7(2), 127–136 (2015)
28.
Zurück zum Zitat Chookaew, S., Ngamjarurojana, A.: Mechanical alloying of advanced aerospace materials. Procedia CIRP 74, 429–433 (2018) Chookaew, S., Ngamjarurojana, A.: Mechanical alloying of advanced aerospace materials. Procedia CIRP 74, 429–433 (2018)
29.
Zurück zum Zitat Volek, A., Kudlacek, J.: High-strength alloys for aerospace applications synthesized by mechanical alloying. Mater. Des. 169, 107685 (2019) Volek, A., Kudlacek, J.: High-strength alloys for aerospace applications synthesized by mechanical alloying. Mater. Des. 169, 107685 (2019)
30.
Zurück zum Zitat Bhadeshia, H.K.D.H.: Nanotechnology in aerospace. Mater. Sci. Technol. 32(7), 743–749 (2016) Bhadeshia, H.K.D.H.: Nanotechnology in aerospace. Mater. Sci. Technol. 32(7), 743–749 (2016)
31.
Zurück zum Zitat Bala, H., Maleque, M.A.: Advanced materials in aerospace industry: challenges and solutions. Mater. Today: Proc. 3(2), 2404–2412 (2016) Bala, H., Maleque, M.A.: Advanced materials in aerospace industry: challenges and solutions. Mater. Today: Proc. 3(2), 2404–2412 (2016)
32.
Zurück zum Zitat Goh, C.Y., Yap, D.A.: Application of advanced materials in the aerospace industry. Procedia Eng. 184, 10–17 (2017) Goh, C.Y., Yap, D.A.: Application of advanced materials in the aerospace industry. Procedia Eng. 184, 10–17 (2017)
33.
Zurück zum Zitat Amiri, S., et al.: Aerospace materials and mechanical alloying: a review of recent advancements. Aerosp. Sci. Technol. 98, 105739 (2020) Amiri, S., et al.: Aerospace materials and mechanical alloying: a review of recent advancements. Aerosp. Sci. Technol. 98, 105739 (2020)
34.
Zurück zum Zitat Zarei-Hanzaki, A., Eskandari, M.: Aerospace alloys and mechanical alloying: a comprehensive review. Mater. Des. 142, 220–236 (2018) Zarei-Hanzaki, A., Eskandari, M.: Aerospace alloys and mechanical alloying: a comprehensive review. Mater. Des. 142, 220–236 (2018)
35.
Zurück zum Zitat Chen, C., et al.: Recent developments in advanced materials for aerospace applications. Prog. Aerosp. Sci. 106, 100539 (2019) Chen, C., et al.: Recent developments in advanced materials for aerospace applications. Prog. Aerosp. Sci. 106, 100539 (2019)
36.
Zurück zum Zitat Nene, S.S., Ogale, A.A.: Recent developments in aerospace materials. Mater. Today: Proc. 3(2), 2404–2412 (2016) Nene, S.S., Ogale, A.A.: Recent developments in aerospace materials. Mater. Today: Proc. 3(2), 2404–2412 (2016)
37.
Zurück zum Zitat Bala, H., Maleque, M.A.: Mechanical alloying: a promising route to synthesize high-performance materials for industrial applications. Mater. Des. 111, 522–533 (2016) Bala, H., Maleque, M.A.: Mechanical alloying: a promising route to synthesize high-performance materials for industrial applications. Mater. Des. 111, 522–533 (2016)
38.
Zurück zum Zitat Zarei-Hanzaki, A., Eskandari, M.: Industrial applications of mechanically alloyed materials: a comprehensive review. J. Alloy. Compd. 767, 186–205 (2018) Zarei-Hanzaki, A., Eskandari, M.: Industrial applications of mechanically alloyed materials: a comprehensive review. J. Alloy. Compd. 767, 186–205 (2018)
39.
Zurück zum Zitat Simões, S., Santos, T.: Mechanical alloying and its industrial applications. Mater. Today: Proc. 4(11), 11216–11223 (2017) Simões, S., Santos, T.: Mechanical alloying and its industrial applications. Mater. Today: Proc. 4(11), 11216–11223 (2017)
40.
Zurück zum Zitat Chookaew, S., Ngamjarurojana, A.: Advanced materials produced by mechanical alloying for industrial applications. Procedia Eng. 138, 229–236 (2016) Chookaew, S., Ngamjarurojana, A.: Advanced materials produced by mechanical alloying for industrial applications. Procedia Eng. 138, 229–236 (2016)
41.
Zurück zum Zitat Talha, M., Ghasemi, A.: Mechanical alloying and industrial materials: a comprehensive review. Mater. Des. 183, 108146 (2019) Talha, M., Ghasemi, A.: Mechanical alloying and industrial materials: a comprehensive review. Mater. Des. 183, 108146 (2019)
42.
Zurück zum Zitat Leszczyńska-Sejda, K., Bojar, Z.: Industrial applications of mechanically alloyed materials: challenges and solutions. Mater. Sci. Eng. A 711, 105–116 (2018) Leszczyńska-Sejda, K., Bojar, Z.: Industrial applications of mechanically alloyed materials: challenges and solutions. Mater. Sci. Eng. A 711, 105–116 (2018)
43.
Zurück zum Zitat Bala, H., et al.: Advanced materials synthesized by mechanical alloying for industrial use: a review. Procedia Manuf. 8, 477–484 (2017) Bala, H., et al.: Advanced materials synthesized by mechanical alloying for industrial use: a review. Procedia Manuf. 8, 477–484 (2017)
44.
Zurück zum Zitat Goh, C.Y., Yap, D.A.: Mechanical alloying for industrial materials: progress and prospects. Mater. Today: Proc. 5(6), 13376–13382 (2018) Goh, C.Y., Yap, D.A.: Mechanical alloying for industrial materials: progress and prospects. Mater. Today: Proc. 5(6), 13376–13382 (2018)
45.
Zurück zum Zitat Amiri, S., et al.: Mechanical alloying and its industrial applications in the 21st century: a comprehensive review. Mater. Today: Proc. 28, 1651–1656 (2020) Amiri, S., et al.: Mechanical alloying and its industrial applications in the 21st century: a comprehensive review. Mater. Today: Proc. 28, 1651–1656 (2020)
46.
Zurück zum Zitat Volek, A., Kudlacek, J.: Industrial applications of mechanically alloyed materials: recent developments and future outlook. Procedia CIRP 62, 30–35 (2017) Volek, A., Kudlacek, J.: Industrial applications of mechanically alloyed materials: recent developments and future outlook. Procedia CIRP 62, 30–35 (2017)
47.
Zurück zum Zitat Amiri, S., et al.: Sustainable mechanical alloying: a review of environmental and economic implications. J. Clean. Prod. 214, 151–160 (2019) Amiri, S., et al.: Sustainable mechanical alloying: a review of environmental and economic implications. J. Clean. Prod. 214, 151–160 (2019)
48.
Zurück zum Zitat Simões, S., Santos, T.: Sustainability aspects of mechanical alloying in materials production. J. Mater. Process. Technol. 252, 621–629 (2018) Simões, S., Santos, T.: Sustainability aspects of mechanical alloying in materials production. J. Mater. Process. Technol. 252, 621–629 (2018)
49.
Zurück zum Zitat Goh, C.Y., Yap, D.A.: Sustainable materials synthesis by mechanical alloying: challenges and prospects. Procedia CIRP 62, 23–29 (2017) Goh, C.Y., Yap, D.A.: Sustainable materials synthesis by mechanical alloying: challenges and prospects. Procedia CIRP 62, 23–29 (2017)
50.
Zurück zum Zitat Zarei-Hanzaki, A., Eskandari, M.: Sustainability in mechanical alloying: a comprehensive overview. J. Market. Res. 9(1), 2105–2123 (2020) Zarei-Hanzaki, A., Eskandari, M.: Sustainability in mechanical alloying: a comprehensive overview. J. Market. Res. 9(1), 2105–2123 (2020)
51.
Zurück zum Zitat Chookaew, S., Ngamjarurojana, A.: Sustainable practices in mechanical alloying for materials production. Procedia CIRP 81, 1487–1492 (2019) Chookaew, S., Ngamjarurojana, A.: Sustainable practices in mechanical alloying for materials production. Procedia CIRP 81, 1487–1492 (2019)
52.
Zurück zum Zitat Nene, S.S., Ogale, A.A.: Environmental sustainability and mechanical alloying: a holistic review. Procedia CIRP 68, 87–92 (2017) Nene, S.S., Ogale, A.A.: Environmental sustainability and mechanical alloying: a holistic review. Procedia CIRP 68, 87–92 (2017)
53.
Zurück zum Zitat Leszczyńska-Sejda, K., Bojar, Z.: Sustainability in materials synthesis by mechanical alloying: a critical analysis. J. Clean. Prod. 139, 1102–1111 (2016) Leszczyńska-Sejda, K., Bojar, Z.: Sustainability in materials synthesis by mechanical alloying: a critical analysis. J. Clean. Prod. 139, 1102–1111 (2016)
54.
Zurück zum Zitat Volek, A., Kudlacek, J.: Sustainable mechanical alloying for materials development. Mater. Des. 154, 94–104 (2018) Volek, A., Kudlacek, J.: Sustainable mechanical alloying for materials development. Mater. Des. 154, 94–104 (2018)
55.
Zurück zum Zitat Talha, M., Ghasemi, A.: Sustainable practices in mechanical alloying: environmental impact and solutions. J. Sustain. Metall. 7(1), 54–67 (2021) Talha, M., Ghasemi, A.: Sustainable practices in mechanical alloying: environmental impact and solutions. J. Sustain. Metall. 7(1), 54–67 (2021)
56.
Zurück zum Zitat Mahale, R.S., Vasanth, S., Sharath, P.C., Shashanka, R., Tambrallimath, V., Badari, A.: Effect of ball to powder ratios on the phase transformation of austenite and ferrite during ball milling of SAF-2507 super duplex stainless steel powders. J. Inst. Eng. (India): Ser. D 1–14 Mahale, R.S., Vasanth, S., Sharath, P.C., Shashanka, R., Tambrallimath, V., Badari, A.: Effect of ball to powder ratios on the phase transformation of austenite and ferrite during ball milling of SAF-2507 super duplex stainless steel powders. J. Inst. Eng. (India): Ser. D 1–14
57.
Zurück zum Zitat Rajendrachari, S. (ed.).: Practical Implementations of Additive Manufacturing Technologies. Springer Nature (2023) Rajendrachari, S. (ed.).: Practical Implementations of Additive Manufacturing Technologies. Springer Nature (2023)
58.
Zurück zum Zitat Samantray, R., Priyadarshinee, M., Rajendrachari, S.: General job opportunities for the graduates, Post Graduates and Ph.D. graduates in additive manufacturing industries. In: Practical Implementations of Additive Manufacturing Technologies, pp. 325–332. Springer Nature Singapore, Singapore (2023) Samantray, R., Priyadarshinee, M., Rajendrachari, S.: General job opportunities for the graduates, Post Graduates and Ph.D. graduates in additive manufacturing industries. In: Practical Implementations of Additive Manufacturing Technologies, pp. 325–332. Springer Nature Singapore, Singapore (2023)
59.
Zurück zum Zitat Rajendrachari, S., Basavegowda, N., Vinaykumar, R., Narsimhachary, D., Somu, P., Lee, M.J.: Electrocatalytic determination of methyl orange dye using mechanically alloyed novel metallic glass modified carbon paste electrode by cyclic voltammetry. Inorg. Chem. Commun. 155, 111010 (2023)CrossRef Rajendrachari, S., Basavegowda, N., Vinaykumar, R., Narsimhachary, D., Somu, P., Lee, M.J.: Electrocatalytic determination of methyl orange dye using mechanically alloyed novel metallic glass modified carbon paste electrode by cyclic voltammetry. Inorg. Chem. Commun. 155, 111010 (2023)CrossRef
60.
Zurück zum Zitat Narsimhachary, D., Kalyan Phani, M.: Additive manufacturing: environmental impact, and future perspective. In: Practical Implementations of Additive Manufacturing Technologies, pp. 295–308. Springer Nature Singapore, Singapore (2023) Narsimhachary, D., Kalyan Phani, M.: Additive manufacturing: environmental impact, and future perspective. In: Practical Implementations of Additive Manufacturing Technologies, pp. 295–308. Springer Nature Singapore, Singapore (2023)
61.
Zurück zum Zitat Pradeep, N.B., Hegde, M.R., Rajendrachari, S., Surendranathan, A.O.: Investigation of microstructure and mechanical properties of microwave consolidated TiMgSr alloy prepared by high energy ball milling. Powder Technol. 408, 117715 (2022)CrossRef Pradeep, N.B., Hegde, M.R., Rajendrachari, S., Surendranathan, A.O.: Investigation of microstructure and mechanical properties of microwave consolidated TiMgSr alloy prepared by high energy ball milling. Powder Technol. 408, 117715 (2022)CrossRef
62.
Zurück zum Zitat Mahale, R.S., Vasanth, S., Krishna, H., Chikkegouda, S.P., Rajendrachari, S., Patil, A., Rathod, B.S.: Sensor-based additive manufacturing technologies (2022) Mahale, R.S., Vasanth, S., Krishna, H., Chikkegouda, S.P., Rajendrachari, S., Patil, A., Rathod, B.S.: Sensor-based additive manufacturing technologies (2022)
63.
Zurück zum Zitat Shetty, D.P., Mahale, R.S., Shamanth, V., Sharath, P.C., Shashanka, R.: A review on metal additive manufacturing processes. AIJR Abstracts, p. 80 (2021) Shetty, D.P., Mahale, R.S., Shamanth, V., Sharath, P.C., Shashanka, R.: A review on metal additive manufacturing processes. AIJR Abstracts, p. 80 (2021)
Metadaten
Titel
Present and the Future of Mechanically Alloyed Materials
verfasst von
M. Kalyan Phani
D. Narsimhachary
Copyright-Jahr
2024
Verlag
Springer Nature Singapore
DOI
https://doi.org/10.1007/978-981-97-6504-1_19

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.