Skip to main content
Erschienen in:

24.07.2022

Pressure Effect on the Thermal Runaway Behaviors of Lithium-Ion Battery in Confined Space

verfasst von: Yawen Li, Lihua Jiang, Zonghou Huang, Zhuangzhuang Jia, Peng Qin, Qingsong Wang

Erschienen in: Fire Technology | Ausgabe 3/2023

Einloggen, um Zugang zu erhalten

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

As an advanced energy storage medium, lithium-ion batteries (LIBs) are being used in aircraft and other aviation fields owing their unique advantages. The thermal runaway (TR) behaviours of LIBs used in aircraft are more complicated and dangerous due to the special operating environments, such as low pressure and enclosed environments. Therefore, a special test platform was designed to study the effect of low pressure on the TR characteristics of 2.2 Ah 18,650 type LIBs in this work. Some critical parameters of TR were obtained, such as onset temperature of TR, maximum temperature, voltage drop time, pressure, and the explosion limit of gases, etc. The results show that with the pressure increasing, the TR onset temperature, maximum temperature, and pressure increase in the test chamber, and the voltage drop time postpones. In addition, the amount of released gas and the explosion limitation range of gases increase with the decrease of the initial pressure. This means it’s easier to occur but with weaker hazard of TR at lower pressure. Besides, the SEM results reveal that deformation and structural damage of cathode materials, which is attributed to the increase of the large amount of gas released at the electrode material level. These results provide the basis for the safe application and storage of LIBs in a confined space under different pressures.

Sie möchten Zugang zu diesem Inhalt erhalten? Dann informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Literatur
1.
Zurück zum Zitat Feng X, Ouyang M, Liu X, Lu L, Xia Y, He X (2018) Thermal runaway mechanism of lithium ion battery for electric vehicles: a review. Energy Storage Materials 10:246–267CrossRef Feng X, Ouyang M, Liu X, Lu L, Xia Y, He X (2018) Thermal runaway mechanism of lithium ion battery for electric vehicles: a review. Energy Storage Materials 10:246–267CrossRef
2.
Zurück zum Zitat Golubkov AW, Fuchs D, Wagner J, Wiltsche H, Stangl C, Fauler G, Voitic G, Thaler A, Hacker V (2014) Thermal-runaway experiments on consumer Li-ion batteries with metal-oxide and olivin-type cathodes. RSC Adv 4:3633–3642CrossRef Golubkov AW, Fuchs D, Wagner J, Wiltsche H, Stangl C, Fauler G, Voitic G, Thaler A, Hacker V (2014) Thermal-runaway experiments on consumer Li-ion batteries with metal-oxide and olivin-type cathodes. RSC Adv 4:3633–3642CrossRef
3.
Zurück zum Zitat Huang Z, Zhao C, Li H, Peng W, Zhang Z, Wang Q (2020) Experimental study on thermal runaway and its propagation in the large format lithium ion battery module with two electrical connection modes. Energy 205:117906CrossRef Huang Z, Zhao C, Li H, Peng W, Zhang Z, Wang Q (2020) Experimental study on thermal runaway and its propagation in the large format lithium ion battery module with two electrical connection modes. Energy 205:117906CrossRef
4.
Zurück zum Zitat Wang Z, Yang H, Li Y, Wang G, Wang J (2019) Thermal runaway and fire behaviors of large-scale lithium ion batteries with different heating methods. J Hazard Mater 379:120730CrossRef Wang Z, Yang H, Li Y, Wang G, Wang J (2019) Thermal runaway and fire behaviors of large-scale lithium ion batteries with different heating methods. J Hazard Mater 379:120730CrossRef
5.
Zurück zum Zitat Sanfelix J, Messagie M, Omar N, Van Mierlo J, Hennige V (2015) Environmental performance of advanced hybrid energy storage systems for electric vehicle applications. Appl Energy 137:925–930CrossRef Sanfelix J, Messagie M, Omar N, Van Mierlo J, Hennige V (2015) Environmental performance of advanced hybrid energy storage systems for electric vehicle applications. Appl Energy 137:925–930CrossRef
6.
Zurück zum Zitat Wang Q, Jiang L, Yu Y, Sun J (2019) Progress of enhancing the safety of lithium ion battery from the electrolyte aspect. Nano Energy 55:93–114CrossRef Wang Q, Jiang L, Yu Y, Sun J (2019) Progress of enhancing the safety of lithium ion battery from the electrolyte aspect. Nano Energy 55:93–114CrossRef
7.
Zurück zum Zitat Henriksen M, Vaagsaether K, Lundberg J, Forseth S, Bjerketvedt D (2019) Explosion characteristics for Li-ion battery electrolytes at elevated temperatures. J Hazard Mater 371:1–7CrossRef Henriksen M, Vaagsaether K, Lundberg J, Forseth S, Bjerketvedt D (2019) Explosion characteristics for Li-ion battery electrolytes at elevated temperatures. J Hazard Mater 371:1–7CrossRef
8.
Zurück zum Zitat Chen S, Wang Z, Wang J, Tong X, Yan W (2020) Lower explosion limit of the vented gases from Li-ion batteries thermal runaway in high temperature condition. J Loss Prev Process Ind 63:103992CrossRef Chen S, Wang Z, Wang J, Tong X, Yan W (2020) Lower explosion limit of the vented gases from Li-ion batteries thermal runaway in high temperature condition. J Loss Prev Process Ind 63:103992CrossRef
9.
Zurück zum Zitat Chen M, Liu J, Ouyang D, Wang J (2019) Experimental investigation on the effect of ambient pressure on thermal runaway and fire behaviors of lithium-ion batteries. Int J Energy Res 43:4898–4911CrossRef Chen M, Liu J, Ouyang D, Wang J (2019) Experimental investigation on the effect of ambient pressure on thermal runaway and fire behaviors of lithium-ion batteries. Int J Energy Res 43:4898–4911CrossRef
10.
Zurück zum Zitat Chen M, Ouyang D, Weng J, Liu J, Wang J (2019) Environmental pressure effects on thermal runaway and fire behaviors of lithium-ion battery with different cathodes and state of charge. Process Saf Environ Prot 130:250–256CrossRef Chen M, Ouyang D, Weng J, Liu J, Wang J (2019) Environmental pressure effects on thermal runaway and fire behaviors of lithium-ion battery with different cathodes and state of charge. Process Saf Environ Prot 130:250–256CrossRef
11.
Zurück zum Zitat Hofmann A, Uhlmann N, Ziebert C, Wiegand O, Schmidt A, Hanemann T (2017) Preventing Li-ion cell explosion during thermal runaway with reduced pressure. Appl Therm Eng 124:539–544CrossRef Hofmann A, Uhlmann N, Ziebert C, Wiegand O, Schmidt A, Hanemann T (2017) Preventing Li-ion cell explosion during thermal runaway with reduced pressure. Appl Therm Eng 124:539–544CrossRef
12.
Zurück zum Zitat Xie S, Ren L, Yang X, Wang H, Sun Q, Chen X, He Y (2020) Influence of cycling aging and ambient pressure on the thermal safety features of lithium-ion battery. J Power Sources 448:227425CrossRef Xie S, Ren L, Yang X, Wang H, Sun Q, Chen X, He Y (2020) Influence of cycling aging and ambient pressure on the thermal safety features of lithium-ion battery. J Power Sources 448:227425CrossRef
13.
Zurück zum Zitat Xie S, Sun J, Chen X, He Y (2020) Thermal runaway behavior of lithium-ion batteries in different charging states under low pressure. Int J Energy Res 45:5795–5805CrossRef Xie S, Sun J, Chen X, He Y (2020) Thermal runaway behavior of lithium-ion batteries in different charging states under low pressure. Int J Energy Res 45:5795–5805CrossRef
14.
Zurück zum Zitat Liu Y, Niu H, Li Z, Liu J, Xu C, Huang X (2021) Thermal runaway characteristics and failure criticality of massive ternary Li-ion battery piles in low-pressure storage and transport. Process Saf Environ Prot 155:486–497CrossRef Liu Y, Niu H, Li Z, Liu J, Xu C, Huang X (2021) Thermal runaway characteristics and failure criticality of massive ternary Li-ion battery piles in low-pressure storage and transport. Process Saf Environ Prot 155:486–497CrossRef
15.
Zurück zum Zitat Fu YY, Lu S, Shi L, Cheng XD, Zhang HP (2018) Ignition and combustion characteristics of lithium ion batteries under low atmospheric pressure. Energy 161:38–45CrossRef Fu YY, Lu S, Shi L, Cheng XD, Zhang HP (2018) Ignition and combustion characteristics of lithium ion batteries under low atmospheric pressure. Energy 161:38–45CrossRef
16.
Zurück zum Zitat Wang H, Du Z, Liu L, Zhang Z, Hao J, Wang Q, Wang S (2020) Study on the thermal runaway and its propagation of lithium-ion batteries under low pressure. Fire Technol 56:2427–2440CrossRef Wang H, Du Z, Liu L, Zhang Z, Hao J, Wang Q, Wang S (2020) Study on the thermal runaway and its propagation of lithium-ion batteries under low pressure. Fire Technol 56:2427–2440CrossRef
17.
Zurück zum Zitat Feng B, Zhai Y, Zhang L (2021) Toward the mechanism study of Pd/gamma-Al2O3-assisted bioalcohol combustion in a flow reactor. Energy Fuels 35:14954–14962CrossRef Feng B, Zhai Y, Zhang L (2021) Toward the mechanism study of Pd/gamma-Al2O3-assisted bioalcohol combustion in a flow reactor. Energy Fuels 35:14954–14962CrossRef
18.
Zurück zum Zitat Liu X, Ren D, Hsu H, Feng X, Xu G-L, Zhuang M, Gao H, Lu L, Han X, Chu Z, Li J, He X, Amine K, Ouyang M (2018) Thermal runaway of lithium-ion batteries without internal short circuit. Joule 2:2047–2064CrossRef Liu X, Ren D, Hsu H, Feng X, Xu G-L, Zhuang M, Gao H, Lu L, Han X, Chu Z, Li J, He X, Amine K, Ouyang M (2018) Thermal runaway of lithium-ion batteries without internal short circuit. Joule 2:2047–2064CrossRef
19.
Zurück zum Zitat Wang Q, Ping P, Zhao X, Chu G, Sun J, Chen C (2012) Thermal runaway caused fire and explosion of lithium ion battery. J Power Sources 208:210–224CrossRef Wang Q, Ping P, Zhao X, Chu G, Sun J, Chen C (2012) Thermal runaway caused fire and explosion of lithium ion battery. J Power Sources 208:210–224CrossRef
20.
Zurück zum Zitat Feng X, Zheng S, Ren D, He X, Wang L, Cui H, Liu X, Jin C, Zhang F, Xu C, Hsu H, Gao S, Chen T, Li Y, Wang T, Wang H, Li M, Ouyang M (2019) Investigating the thermal runaway mechanisms of lithium-ion batteries based on thermal analysis database. Appl Energy 246:53–64CrossRef Feng X, Zheng S, Ren D, He X, Wang L, Cui H, Liu X, Jin C, Zhang F, Xu C, Hsu H, Gao S, Chen T, Li Y, Wang T, Wang H, Li M, Ouyang M (2019) Investigating the thermal runaway mechanisms of lithium-ion batteries based on thermal analysis database. Appl Energy 246:53–64CrossRef
21.
Zurück zum Zitat Lei B, Zhao W, Ziebert C, Uhlmann N, Rohde M, Seifert H (2017) Experimental analysis of thermal runaway in 18650 cylindrical Li-ion cells using an accelerating rate calorimeter. Batteries 3:14CrossRef Lei B, Zhao W, Ziebert C, Uhlmann N, Rohde M, Seifert H (2017) Experimental analysis of thermal runaway in 18650 cylindrical Li-ion cells using an accelerating rate calorimeter. Batteries 3:14CrossRef
22.
Zurück zum Zitat Finegan DP, Darcy E, Keyser M, Tjaden B, Heenan TMM, Jervis R, Bailey JJ, Vo NT, Magdysyuk OV, Drakopoulos M, Michiel MD, Rack A, Hinds G, Brett DJL, Shearing PR (2018) Identifying the cause of rupture of Li-ion batteries during thermal runaway. Adv Sci (Weinh) 5:1700369CrossRef Finegan DP, Darcy E, Keyser M, Tjaden B, Heenan TMM, Jervis R, Bailey JJ, Vo NT, Magdysyuk OV, Drakopoulos M, Michiel MD, Rack A, Hinds G, Brett DJL, Shearing PR (2018) Identifying the cause of rupture of Li-ion batteries during thermal runaway. Adv Sci (Weinh) 5:1700369CrossRef
23.
Zurück zum Zitat Koch S, Fill A, Birke KP (2018) Comprehensive gas analysis on large scale automotive lithium-ion cells in thermal runaway. J Power Sources 398:106–112CrossRef Koch S, Fill A, Birke KP (2018) Comprehensive gas analysis on large scale automotive lithium-ion cells in thermal runaway. J Power Sources 398:106–112CrossRef
24.
Zurück zum Zitat Larsson F, Bertilsson S, Furlani M, Albinsson I, Mellander B-E (2018) Gas explosions and thermal runaways during external heating abuse of commercial lithium-ion graphite-LiCoO2 cells at different levels of ageing. J Power Sources 373:220–231CrossRef Larsson F, Bertilsson S, Furlani M, Albinsson I, Mellander B-E (2018) Gas explosions and thermal runaways during external heating abuse of commercial lithium-ion graphite-LiCoO2 cells at different levels of ageing. J Power Sources 373:220–231CrossRef
25.
Zurück zum Zitat Golubkov AW, Scheikl S, Planteu R, Voitic G, Wiltsche H, Stangl C, Fauler G, Thaler A, Hacker V (2015) Thermal runaway of commercial 18650 Li-ion batteries with LFP and NCA cathodes—impact of state of charge and overcharge. Rsc Adv 5:57171–57186CrossRef Golubkov AW, Scheikl S, Planteu R, Voitic G, Wiltsche H, Stangl C, Fauler G, Thaler A, Hacker V (2015) Thermal runaway of commercial 18650 Li-ion batteries with LFP and NCA cathodes—impact of state of charge and overcharge. Rsc Adv 5:57171–57186CrossRef
26.
Zurück zum Zitat Kong WH, Li H, Huang XJ, Chen LQ (2005) Gas evolution behaviors for several cathode materials in lithium-ion batteries. J Power Sources 142:285–291CrossRef Kong WH, Li H, Huang XJ, Chen LQ (2005) Gas evolution behaviors for several cathode materials in lithium-ion batteries. J Power Sources 142:285–291CrossRef
27.
Zurück zum Zitat Browning KL, Baggetto L, Unocic RR, Dudney NJ, Veith GM (2013) Gas evolution from cathode materials: a pathway to solvent decomposition concomitant to SEI formation. J Power Sources 239:341–346CrossRef Browning KL, Baggetto L, Unocic RR, Dudney NJ, Veith GM (2013) Gas evolution from cathode materials: a pathway to solvent decomposition concomitant to SEI formation. J Power Sources 239:341–346CrossRef
28.
Zurück zum Zitat Spotnitz R, Franklin J (2003) Abuse behavior of high-power, lithium-ion cells. J Power Sources 113:81–100CrossRef Spotnitz R, Franklin J (2003) Abuse behavior of high-power, lithium-ion cells. J Power Sources 113:81–100CrossRef
29.
Zurück zum Zitat Diaz F, Wang Y, Weyhe R, Friedrich B (2019) Gas generation measurement and evaluation during mechanical processing and thermal treatment of spent Li-ion batteries. Waste Manag 84:102–111CrossRef Diaz F, Wang Y, Weyhe R, Friedrich B (2019) Gas generation measurement and evaluation during mechanical processing and thermal treatment of spent Li-ion batteries. Waste Manag 84:102–111CrossRef
30.
Zurück zum Zitat Mathieu O, Grégoire CM, Turner MA, Mohr DJ, Alturaifi SA, Thomas JC, Petersen EL (2022) Experimental investigation of the combustion properties of an average thermal runaway gas mixture from li-ion batteries. Energy Fuels 36:3247–3258CrossRef Mathieu O, Grégoire CM, Turner MA, Mohr DJ, Alturaifi SA, Thomas JC, Petersen EL (2022) Experimental investigation of the combustion properties of an average thermal runaway gas mixture from li-ion batteries. Energy Fuels 36:3247–3258CrossRef
31.
Zurück zum Zitat Said AO, Lee C, Stoliarov SI (2020) Experimental investigation of cascading failure in 18650 lithium ion cell arrays: impact of cathode chemistry. J Power Sources 446:227347CrossRef Said AO, Lee C, Stoliarov SI (2020) Experimental investigation of cascading failure in 18650 lithium ion cell arrays: impact of cathode chemistry. J Power Sources 446:227347CrossRef
32.
Zurück zum Zitat Baird AR, Archibald EJ, Marr KC, Ezekoye OA (2020) Explosion hazards from lithium-ion battery vent gas. J Power Sources 446:227257CrossRef Baird AR, Archibald EJ, Marr KC, Ezekoye OA (2020) Explosion hazards from lithium-ion battery vent gas. J Power Sources 446:227257CrossRef
33.
Zurück zum Zitat Mendiburu AZ, Coronado CR, de Carvalho JA (2020) Difficulties on the determination of the flammability limits of fuel mixtures by the Law of Le Chatelier. Process Saf Environ Prot 142:45–55CrossRef Mendiburu AZ, Coronado CR, de Carvalho JA (2020) Difficulties on the determination of the flammability limits of fuel mixtures by the Law of Le Chatelier. Process Saf Environ Prot 142:45–55CrossRef
34.
Zurück zum Zitat Li W, Wang H, Zhang Y, Ouyang M (2019) Flammability characteristics of the battery vent gas: a case of NCA and LFP lithium-ion batteries during external heating abuse. J Energy Storage 24:100775CrossRef Li W, Wang H, Zhang Y, Ouyang M (2019) Flammability characteristics of the battery vent gas: a case of NCA and LFP lithium-ion batteries during external heating abuse. J Energy Storage 24:100775CrossRef
Metadaten
Titel
Pressure Effect on the Thermal Runaway Behaviors of Lithium-Ion Battery in Confined Space
verfasst von
Yawen Li
Lihua Jiang
Zonghou Huang
Zhuangzhuang Jia
Peng Qin
Qingsong Wang
Publikationsdatum
24.07.2022
Verlag
Springer US
Erschienen in
Fire Technology / Ausgabe 3/2023
Print ISSN: 0015-2684
Elektronische ISSN: 1572-8099
DOI
https://doi.org/10.1007/s10694-022-01296-1

Weitere Artikel der Ausgabe 3/2023

Fire Technology 3/2023 Zur Ausgabe