Skip to main content
Erschienen in: Tribology Letters 3/2015

01.12.2015 | Original Paper

Pressure–Viscosity Coefficient of Hydrocarbon Base Oil through Molecular Dynamics Simulations

verfasst von: Pinzhi Liu, Hualong Yu, Ning Ren, Frances E. Lockwood, Q. Jane Wang

Erschienen in: Tribology Letters | Ausgabe 3/2015

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The pressure–viscosity coefficient (the α value), which represents the variation of viscosity as a function of pressure, is an important parameter for elastohydrodynamic lubrication analyses. The properties of hydrocarbons in the C20–C40 mass range are of fundamental importance as they are basic constituents of synthetic- and mineral-based lubricant stocks. The conventional acquisition of the α value requires preparation of lubricant samples and experimental testing by means of a high-pressure viscometer. In this paper, we present a method to obtain the α value of a typical base oil (1-Decene trimer) based solely on the molecular dynamics simulations. Non-equilibrium molecular dynamics (NEMD) simulations were performed to calculate the shear viscosity of the lubricant at various temperatures and pressures up to 1 GPa. Elevated temperatures and time–temperature superposition (TTS)-based extrapolations were applied to further extend the ability of the NEMD simulations, and the rotational relaxation time was calculated and used to determine the validity of the NEMD calculations. The α value at 100 °C was calculated and compared with experimental results. Effectiveness of the extrapolation was evaluated with a 95 % confidence interval.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Bair, S., Liu, Y., Wang, Q.J.: The pressure–viscosity coefficient for Newtonian EHL film thickness with general piezoviscous response. J. Tribol. 128(3), 624–631 (2006)CrossRef Bair, S., Liu, Y., Wang, Q.J.: The pressure–viscosity coefficient for Newtonian EHL film thickness with general piezoviscous response. J. Tribol. 128(3), 624–631 (2006)CrossRef
2.
Zurück zum Zitat Bair, S., Qureshi, F.: Accurate measurements of pressure–viscosity behavior in lubricants. Tribol. Trans. 45(3), 390–396 (2002)CrossRef Bair, S., Qureshi, F.: Accurate measurements of pressure–viscosity behavior in lubricants. Tribol. Trans. 45(3), 390–396 (2002)CrossRef
3.
Zurück zum Zitat Seeton, C.: Viscosity–temperature correlation for liquids. Tribol. Lett. 22(1), 67–78 (2006)CrossRef Seeton, C.: Viscosity–temperature correlation for liquids. Tribol. Lett. 22(1), 67–78 (2006)CrossRef
4.
Zurück zum Zitat Totten, G.E., Westbrook, S.R., Shah, R.J.: Fuels and Lubricants Handbook: Technology, Properties, Performance, and Testing, vol. 37. ASTM International, Pennsylvania (2003)CrossRef Totten, G.E., Westbrook, S.R., Shah, R.J.: Fuels and Lubricants Handbook: Technology, Properties, Performance, and Testing, vol. 37. ASTM International, Pennsylvania (2003)CrossRef
5.
Zurück zum Zitat Vogel, H.: Das temperaturabhängigkeitsgesetz der viskosität von flüssigkeiten. Phys. Z 22, 645–646 (1921) Vogel, H.: Das temperaturabhängigkeitsgesetz der viskosität von flüssigkeiten. Phys. Z 22, 645–646 (1921)
6.
Zurück zum Zitat Fulcher, G.S.: Analysis of recent measurements of the viscosity of glasses. J. Am. Ceram. Soc. 8(6), 339–355 (1925)CrossRef Fulcher, G.S.: Analysis of recent measurements of the viscosity of glasses. J. Am. Ceram. Soc. 8(6), 339–355 (1925)CrossRef
7.
Zurück zum Zitat Tammann, G., Hesse, W.: Die Abhängigkeit der Viscosität von der Temperatur bie unterkühlten Flüssigkeiten. Zeitschrift für anorganische und allgemeine Chemie 156(1), 245–257 (1926)CrossRef Tammann, G., Hesse, W.: Die Abhängigkeit der Viscosität von der Temperatur bie unterkühlten Flüssigkeiten. Zeitschrift für anorganische und allgemeine Chemie 156(1), 245–257 (1926)CrossRef
8.
Zurück zum Zitat Stachowiak, G., Batchelor, A.W.: Engineering Tribology. Butterworth-Heinemann, Oxford (2013) Stachowiak, G., Batchelor, A.W.: Engineering Tribology. Butterworth-Heinemann, Oxford (2013)
9.
Zurück zum Zitat Schaschke, C.J.: High pressure viscosity measurement with falling body type viscometers. Int. Rev. Chem. Eng. 2(5), 564–576 (2010) Schaschke, C.J.: High pressure viscosity measurement with falling body type viscometers. Int. Rev. Chem. Eng. 2(5), 564–576 (2010)
10.
Zurück zum Zitat Bair, S.: A routine high-pressure viscometer for accurate measurements to 1 GPa. Tribol. Trans. 47(3), 356–360 (2004)CrossRef Bair, S.: A routine high-pressure viscometer for accurate measurements to 1 GPa. Tribol. Trans. 47(3), 356–360 (2004)CrossRef
11.
Zurück zum Zitat Cook, R.L., Herbst, C.A., King Jr, H.: High-pressure viscosity of glass-forming liquids measured by the centrifugal force diamond anvil cell viscometer. J. Phys. Chem. 97(10), 2355–2361 (1993)CrossRef Cook, R.L., Herbst, C.A., King Jr, H.: High-pressure viscosity of glass-forming liquids measured by the centrifugal force diamond anvil cell viscometer. J. Phys. Chem. 97(10), 2355–2361 (1993)CrossRef
12.
Zurück zum Zitat Hamrock, B.J., Dowson, D.: Isothermal elastohydrodynamic lubrication of point contacts: part III—fully flooded results. J. Lubr. Technol. 99(2), 264–275 (1977)CrossRef Hamrock, B.J., Dowson, D.: Isothermal elastohydrodynamic lubrication of point contacts: part III—fully flooded results. J. Lubr. Technol. 99(2), 264–275 (1977)CrossRef
13.
Zurück zum Zitat Hamrock, B.J., Dowson, D.: Isothermal elastohydrodynamic lubrication of point contacts: Part 1—theoretical formulation. J. Lubr. Technol. 98(2), 223–228 (1976)CrossRef Hamrock, B.J., Dowson, D.: Isothermal elastohydrodynamic lubrication of point contacts: Part 1—theoretical formulation. J. Lubr. Technol. 98(2), 223–228 (1976)CrossRef
14.
Zurück zum Zitat Ramasamy, U.S., Bair, S., Martini, A.: Predicting pressure–viscosity behavior from ambient viscosity and compressibility: challenges and opportunities. Tribol. Lett. 57(2), 1–7 (2015) Ramasamy, U.S., Bair, S., Martini, A.: Predicting pressure–viscosity behavior from ambient viscosity and compressibility: challenges and opportunities. Tribol. Lett. 57(2), 1–7 (2015)
15.
Zurück zum Zitat Wu, C., Klaus, E., Duda, J.: Development of a method for the prediction of pressure–viscosity coefficients of lubricating oils based on free-volume theory. J. Tribol. 111(1), 121–128 (1989)CrossRef Wu, C., Klaus, E., Duda, J.: Development of a method for the prediction of pressure–viscosity coefficients of lubricating oils based on free-volume theory. J. Tribol. 111(1), 121–128 (1989)CrossRef
16.
Zurück zum Zitat Mondello, M., Grest, G.S.: Molecular dynamics of linear and branched alkanes. J. Chem. Phys. 103(16), 7156–7165 (1995)CrossRef Mondello, M., Grest, G.S.: Molecular dynamics of linear and branched alkanes. J. Chem. Phys. 103(16), 7156–7165 (1995)CrossRef
17.
Zurück zum Zitat Nath, S.K., Escobedo, F.A., de Pablo, J.J.: On the simulation of vapor–liquid equilibria for alkanes. J. Chem. Phys. 108, 9905 (1998)CrossRef Nath, S.K., Escobedo, F.A., de Pablo, J.J.: On the simulation of vapor–liquid equilibria for alkanes. J. Chem. Phys. 108, 9905 (1998)CrossRef
18.
Zurück zum Zitat Martin, M.G., Siepmann, J.I.: Novel configurational-bias Monte Carlo method for branched molecules. Transferable potentials for phase equilibria. 2. United-atom description of branched alkanes. J. Phys. Chem. B 103(21), 4508–4517 (1999)CrossRef Martin, M.G., Siepmann, J.I.: Novel configurational-bias Monte Carlo method for branched molecules. Transferable potentials for phase equilibria. 2. United-atom description of branched alkanes. J. Phys. Chem. B 103(21), 4508–4517 (1999)CrossRef
19.
Zurück zum Zitat Padilla, P., Toxværd, S.: Self-diffusion in n-alkane fluid models. J. Chem. Phys. 94(8), 5650–5654 (1991)CrossRef Padilla, P., Toxværd, S.: Self-diffusion in n-alkane fluid models. J. Chem. Phys. 94(8), 5650–5654 (1991)CrossRef
20.
Zurück zum Zitat Chang, J., Sandler, S.I.: Interatomic Lennard-Jones potentials of linear and branched alkanes calibrated by Gibbs ensemble simulations for vapor–liquid equilibria. J. Chem. Phys. 121(15), 7474–7483 (2004)CrossRef Chang, J., Sandler, S.I.: Interatomic Lennard-Jones potentials of linear and branched alkanes calibrated by Gibbs ensemble simulations for vapor–liquid equilibria. J. Chem. Phys. 121(15), 7474–7483 (2004)CrossRef
21.
Zurück zum Zitat Evans, D., Morriss, G.: Statistical Mechanics of Nonequilibrium Liquids. Cambridge University Press, Cambridge (2008) Evans, D., Morriss, G.: Statistical Mechanics of Nonequilibrium Liquids. Cambridge University Press, Cambridge (2008)
22.
Zurück zum Zitat Morriss, G.P., Daivis, P.J., Evans, D.J.: The rheology of n alkanes: Decane and eicosane. J. Chem. Phys. 94(11), 7420–7433 (1991)CrossRef Morriss, G.P., Daivis, P.J., Evans, D.J.: The rheology of n alkanes: Decane and eicosane. J. Chem. Phys. 94(11), 7420–7433 (1991)CrossRef
23.
Zurück zum Zitat Cui, S., Cummings, P., Cochran, H., Moore, J., Gupta, S.: Nonequilibrium molecular dynamics simulation of the rheology of linear and branched alkanes. Int. J. Thermophys. 19(2), 449–459 (1998)CrossRef Cui, S., Cummings, P., Cochran, H., Moore, J., Gupta, S.: Nonequilibrium molecular dynamics simulation of the rheology of linear and branched alkanes. Int. J. Thermophys. 19(2), 449–459 (1998)CrossRef
24.
Zurück zum Zitat Cui, S., Gupta, S., Cummings, P., Cochran, H.: Molecular dynamics simulations of the rheology of normal decane, hexadecane, and tetracosane. J. Chem. Phys. 105(3), 1214–1220 (1996)CrossRef Cui, S., Gupta, S., Cummings, P., Cochran, H.: Molecular dynamics simulations of the rheology of normal decane, hexadecane, and tetracosane. J. Chem. Phys. 105(3), 1214–1220 (1996)CrossRef
25.
Zurück zum Zitat Khare, R., de Pablo, J., Yethiraj, A.: Rheological, thermodynamic, and structural studies of linear and branched alkanes under shear. J. Chem. Phys. 107, 6956 (1997)CrossRef Khare, R., de Pablo, J., Yethiraj, A.: Rheological, thermodynamic, and structural studies of linear and branched alkanes under shear. J. Chem. Phys. 107, 6956 (1997)CrossRef
26.
Zurück zum Zitat Kioupis, L.I., Maginn, E.J.: Molecular simulation of poly-α-olefin synthetic lubricants: impact of molecular architecture on performance properties. J. Phys. Chem. B 103(49), 10781–10790 (1999)CrossRef Kioupis, L.I., Maginn, E.J.: Molecular simulation of poly-α-olefin synthetic lubricants: impact of molecular architecture on performance properties. J. Phys. Chem. B 103(49), 10781–10790 (1999)CrossRef
27.
Zurück zum Zitat Moore, J., Cui, S., Cochran, H., Cummings, P.: Rheology of lubricant basestocks: a molecular dynamics study of C30 isomers. J. Chem. Phys. 113(19), 8833–8840 (2000)CrossRef Moore, J., Cui, S., Cochran, H., Cummings, P.: Rheology of lubricant basestocks: a molecular dynamics study of C30 isomers. J. Chem. Phys. 113(19), 8833–8840 (2000)CrossRef
28.
Zurück zum Zitat Jabbarzadeh, A., Atkinson, J., Tanner, R.: Effect of molecular shape on rheological properties in molecular dynamics simulation of star, H, comb, and linear polymer melts. Macromolecules 36(13), 5020–5031 (2003)CrossRef Jabbarzadeh, A., Atkinson, J., Tanner, R.: Effect of molecular shape on rheological properties in molecular dynamics simulation of star, H, comb, and linear polymer melts. Macromolecules 36(13), 5020–5031 (2003)CrossRef
29.
Zurück zum Zitat Moore, J., Cui, S., Cummings, P., Cochran, H.: Lubricant characterization by molecular simulation. AIChE J. 43(12), 3260–3263 (1997)CrossRef Moore, J., Cui, S., Cummings, P., Cochran, H.: Lubricant characterization by molecular simulation. AIChE J. 43(12), 3260–3263 (1997)CrossRef
30.
Zurück zum Zitat Mundy, C.J., Klein, M.L., Siepmann, J.I.: Determination of the pressure–viscosity coefficient of decane by molecular simulation. J. Phys. Chem. 100(42), 16779–16781 (1996)CrossRef Mundy, C.J., Klein, M.L., Siepmann, J.I.: Determination of the pressure–viscosity coefficient of decane by molecular simulation. J. Phys. Chem. 100(42), 16779–16781 (1996)CrossRef
31.
Zurück zum Zitat Kioupis, L.I., Maginn, E.J.: Impact of molecular architecture on the high-pressure rheology of hydrocarbon fluids. J. Phys. Chem. B 104(32), 7774–7783 (2000)CrossRef Kioupis, L.I., Maginn, E.J.: Impact of molecular architecture on the high-pressure rheology of hydrocarbon fluids. J. Phys. Chem. B 104(32), 7774–7783 (2000)CrossRef
32.
Zurück zum Zitat McCabe, C., Cui, S., Cummings, P.T., Gordon, P.A., Saeger, R.B.: Examining the rheology of 9-octylheptadecane to giga-pascal pressures. J. Chem. Phys. 114, 1887 (2001)CrossRef McCabe, C., Cui, S., Cummings, P.T., Gordon, P.A., Saeger, R.B.: Examining the rheology of 9-octylheptadecane to giga-pascal pressures. J. Chem. Phys. 114, 1887 (2001)CrossRef
33.
Zurück zum Zitat Bair, S., Qureshi, F.: The generalized Newtonian fluid model and elastohydrodynamic film thickness. J. Tribol. 125(1), 70–75 (2003)CrossRef Bair, S., Qureshi, F.: The generalized Newtonian fluid model and elastohydrodynamic film thickness. J. Tribol. 125(1), 70–75 (2003)CrossRef
34.
Zurück zum Zitat Gordon, P.A.: Development of intermolecular potentials for predicting transport properties of hydrocarbons. J. Chem. Phys. 125, 014504 (2006)CrossRef Gordon, P.A.: Development of intermolecular potentials for predicting transport properties of hydrocarbons. J. Chem. Phys. 125, 014504 (2006)CrossRef
35.
Zurück zum Zitat Gordon, P.A.: Characterizing isoparaffin transport properties with Stokes–Einstein relationships. Ind. Eng. Chem. Res. 42(26), 7025–7036 (2003)CrossRef Gordon, P.A.: Characterizing isoparaffin transport properties with Stokes–Einstein relationships. Ind. Eng. Chem. Res. 42(26), 7025–7036 (2003)CrossRef
36.
Zurück zum Zitat Pan, G., McCabe, C.: Prediction of viscosity for molecular fluids at experimentally accessible shear rates using the transient time correlation function formalism. J. Chem. Phys. 125, 194527 (2006)CrossRef Pan, G., McCabe, C.: Prediction of viscosity for molecular fluids at experimentally accessible shear rates using the transient time correlation function formalism. J. Chem. Phys. 125, 194527 (2006)CrossRef
37.
Zurück zum Zitat Morriss, G.P., Evans, D.J.: Application of transient correlation functions to shear flow far from equilibrium. Phys. Rev. A 35(2), 792 (1987)CrossRef Morriss, G.P., Evans, D.J.: Application of transient correlation functions to shear flow far from equilibrium. Phys. Rev. A 35(2), 792 (1987)CrossRef
38.
Zurück zum Zitat Evans, D.J., Morriss, G.P.: Transient–time-correlation functions and the rheology of fluids. Phys. Rev. A 38(8), 4142 (1988)CrossRef Evans, D.J., Morriss, G.P.: Transient–time-correlation functions and the rheology of fluids. Phys. Rev. A 38(8), 4142 (1988)CrossRef
39.
Zurück zum Zitat Bair, S., McCabe, C., Cummings, P.T.: Comparison of nonequilibrium molecular dynamics with experimental measurements in the nonlinear shear-thinning regime. Phys. Rev. Lett. 88(5), 58302 (2002)CrossRef Bair, S., McCabe, C., Cummings, P.T.: Comparison of nonequilibrium molecular dynamics with experimental measurements in the nonlinear shear-thinning regime. Phys. Rev. Lett. 88(5), 58302 (2002)CrossRef
40.
Zurück zum Zitat Hansen, J.-P., McDonald, I.R.: Theory of simple liquids. Elsevier, Amsterdam (1990) Hansen, J.-P., McDonald, I.R.: Theory of simple liquids. Elsevier, Amsterdam (1990)
41.
Zurück zum Zitat Williams, G., Watts, D.C.: Non-symmetrical dielectric relaxation behaviour arising from a simple empirical decay function. Trans. Faraday Soc. 66, 80–85 (1970)CrossRef Williams, G., Watts, D.C.: Non-symmetrical dielectric relaxation behaviour arising from a simple empirical decay function. Trans. Faraday Soc. 66, 80–85 (1970)CrossRef
42.
Zurück zum Zitat Bair, S.: The high pressure rheology of some simple model hydrocarbons. Proc. Inst. Mech. Eng., J: J. Eng. Tribol. 216(3), 139–149 (2002)CrossRef Bair, S.: The high pressure rheology of some simple model hydrocarbons. Proc. Inst. Mech. Eng., J: J. Eng. Tribol. 216(3), 139–149 (2002)CrossRef
43.
Zurück zum Zitat Siepmann, J.I., Karaborni, S., Smit, B.: Simulating the critical behaviour of complex fluids. Nature 365, 330–332 (1993)CrossRef Siepmann, J.I., Karaborni, S., Smit, B.: Simulating the critical behaviour of complex fluids. Nature 365, 330–332 (1993)CrossRef
44.
Zurück zum Zitat Mondello, M., Grest, G.S.: Molecular dynamics of linear and branched alkanes. J. Chem. Phys. 103(16), 7156 (1995)CrossRef Mondello, M., Grest, G.S.: Molecular dynamics of linear and branched alkanes. J. Chem. Phys. 103(16), 7156 (1995)CrossRef
45.
Zurück zum Zitat Mundy, C.J., Siepmann, J.I., Klein, M.L.: Calculation of the shear viscosity of decane using a reversible multiple time-step algorithm. J. Chem. Phys. 102(8), 3376 (1995)CrossRef Mundy, C.J., Siepmann, J.I., Klein, M.L.: Calculation of the shear viscosity of decane using a reversible multiple time-step algorithm. J. Chem. Phys. 102(8), 3376 (1995)CrossRef
46.
47.
Zurück zum Zitat Jorgensen, W.L., Madura, J.D., Swenson, C.J.: Optimized intermolecular potential functions for liquid hydrocarbons. J. Am. Chem. Soc. 106(22), 6638–6646 (1984)CrossRef Jorgensen, W.L., Madura, J.D., Swenson, C.J.: Optimized intermolecular potential functions for liquid hydrocarbons. J. Am. Chem. Soc. 106(22), 6638–6646 (1984)CrossRef
48.
Zurück zum Zitat Tuckerman, M.E., Mundy, C.J., Balasubramanian, S., Klein, M.L.: Modified nonequilibrium molecular dynamics for fluid flows with energy conservation. J. Chem. Phys. 106(13), 5615–5621 (1997)CrossRef Tuckerman, M.E., Mundy, C.J., Balasubramanian, S., Klein, M.L.: Modified nonequilibrium molecular dynamics for fluid flows with energy conservation. J. Chem. Phys. 106(13), 5615–5621 (1997)CrossRef
49.
Zurück zum Zitat Plimpton, S.: Fast parallel algorithms for short-range molecular dynamics. J. Comput. Phys. 117(1), 1–19 (1995)CrossRef Plimpton, S.: Fast parallel algorithms for short-range molecular dynamics. J. Comput. Phys. 117(1), 1–19 (1995)CrossRef
52.
Zurück zum Zitat Booser, E.R.: CRC handbook of lubrication. Theory and practice of tribology: volume II: theory and design. CRC Press Inc., Florida (1984) Booser, E.R.: CRC handbook of lubrication. Theory and practice of tribology: volume II: theory and design. CRC Press Inc., Florida (1984)
Metadaten
Titel
Pressure–Viscosity Coefficient of Hydrocarbon Base Oil through Molecular Dynamics Simulations
verfasst von
Pinzhi Liu
Hualong Yu
Ning Ren
Frances E. Lockwood
Q. Jane Wang
Publikationsdatum
01.12.2015
Verlag
Springer US
Erschienen in
Tribology Letters / Ausgabe 3/2015
Print ISSN: 1023-8883
Elektronische ISSN: 1573-2711
DOI
https://doi.org/10.1007/s11249-015-0610-6

Weitere Artikel der Ausgabe 3/2015

Tribology Letters 3/2015 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.