Skip to main content
Erschienen in: Journal of Materials Engineering and Performance 12/2020

16.11.2020

Pressureless Sintering Kinetics of NiFe2O4 Ceramic Fabricated by Slip Casting

verfasst von: Zhigang Zhang, Zhuokun Cao, Guoyin Zu, Jianrong Xu

Erschienen in: Journal of Materials Engineering and Performance | Ausgabe 12/2020

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

In this work, a systematic research is carried out to investigate the sintering kinetics of NiFe2O4 ceramic obtained by slip casting and pressureless sintering. The sintering shrinkage behaviors showed the linear shrinkage and linear shrinkage rate of the green body in the axial and radial directions, both increased with increasing sintering temperature, though the maximum linear shrinkage rate in the radial direction was acquired at a lower temperature (1280.7°C) than that in the axial direction (1305.4°C) for a denser compact. The temperature related to the maximum densification rate was about 1316.5°C while the relative density was around 72%. The characteristic sintering kinetics window exhibited that the sintering process could be typically divided into three stages. The sintering activation energy of the initial stage was 268.34 kJ mol−1, and the initial stage of the sintering process was controlled by both grain boundary diffusion and volume diffusion mechanisms. The grain growth kinetic analysis illustrated the grain growth exponent (n) reduced from 2.959 to 2.169 when the sintering temperature increased from 1300 to 1375°C, while the activation energy for grain growth decreased with both the increasing of sintering temperature and the shortening of holding time. It implied that the atomic diffusion process controlled the grain growth. In addition, it was observed that increases in the bending strength and elastic modulus reached its maximum value of 70.36 ± 1.03 MPa and 3.44 ± 0.53 GPa, respectively, mainly associated with the relatively dense microstructure.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat B. Wang, J.J. Du, Y.H. Liu, and G.C. Yao, Effect of TiO2 Doping on the Sintering Process, Mechanical and Magnetic Properties of NiFe2O4 Ferrite Ceramics, Int. J. Appl. Ceram. Technol., 2015, 12(3), p 658–664CrossRef B. Wang, J.J. Du, Y.H. Liu, and G.C. Yao, Effect of TiO2 Doping on the Sintering Process, Mechanical and Magnetic Properties of NiFe2O4 Ferrite Ceramics, Int. J. Appl. Ceram. Technol., 2015, 12(3), p 658–664CrossRef
2.
Zurück zum Zitat K.E. Sickafus, J.M. Wills, and N.W. Grimes, Structure of Spinel, J. Am. Ceram. Soc., 1999, 82(12), p 3279–3292CrossRef K.E. Sickafus, J.M. Wills, and N.W. Grimes, Structure of Spinel, J. Am. Ceram. Soc., 1999, 82(12), p 3279–3292CrossRef
3.
Zurück zum Zitat A.T. Nelson, J.T. White, D.A. Andersson, J.A. Aguiar, K.J. McClellan, D.D. Byler, M.P. Short, and C.R. Stanek, Thermal Expansion, Heat Capacity, and Thermal Conductivity of Nickel Ferrite (NiFe2O4), J. Am. Ceram. Soc., 2014, 97(5), p 1559–1565CrossRef A.T. Nelson, J.T. White, D.A. Andersson, J.A. Aguiar, K.J. McClellan, D.D. Byler, M.P. Short, and C.R. Stanek, Thermal Expansion, Heat Capacity, and Thermal Conductivity of Nickel Ferrite (NiFe2O4), J. Am. Ceram. Soc., 2014, 97(5), p 1559–1565CrossRef
4.
Zurück zum Zitat S. Briceño, W. Brämer-Escamilla, P. Silva, J. García, H. Del Castillo, M. Villarroel, J.P. Rodriguez, M.A. Ramos, R. Morales, and Y. Diaz, NiFe2O4/Activated Carbon Nanocomposite as Magnetic Material from Petcoke, J. Magn. Magn. Mater., 2014, 360, p 67–72CrossRef S. Briceño, W. Brämer-Escamilla, P. Silva, J. García, H. Del Castillo, M. Villarroel, J.P. Rodriguez, M.A. Ramos, R. Morales, and Y. Diaz, NiFe2O4/Activated Carbon Nanocomposite as Magnetic Material from Petcoke, J. Magn. Magn. Mater., 2014, 360, p 67–72CrossRef
5.
Zurück zum Zitat V. Manikandan, J.C. Denardin, S. Vigniselvan, and R.S. Mane, Structural, Dielectric and Enhanced Soft Magnetic Properties of Lithium (Li) Substituted Nickel Ferrite (NiFe2O4) Nanoparticles, J. Magn. Magn. Mater., 2018, 465, p 634–639CrossRef V. Manikandan, J.C. Denardin, S. Vigniselvan, and R.S. Mane, Structural, Dielectric and Enhanced Soft Magnetic Properties of Lithium (Li) Substituted Nickel Ferrite (NiFe2O4) Nanoparticles, J. Magn. Magn. Mater., 2018, 465, p 634–639CrossRef
6.
Zurück zum Zitat K. Kombaiah, J.J. Vijaya, L.J. Kennedy, and K. Kaviyarasu, Catalytic Studies of NiFe2O4 Nanoparticles Prepared by Conventional and Microwave Combustion Method, Mater. Chem. Phys., 2019, 221, p 11–28CrossRef K. Kombaiah, J.J. Vijaya, L.J. Kennedy, and K. Kaviyarasu, Catalytic Studies of NiFe2O4 Nanoparticles Prepared by Conventional and Microwave Combustion Method, Mater. Chem. Phys., 2019, 221, p 11–28CrossRef
7.
Zurück zum Zitat Y. Tang, C.H. Yang, Y.W. Yang, X.T. Yin, W.X. Que, and J.F. Zhu, Three Dimensional Hierarchical Network Structure of S-NiFe2O4 Modified Few-Layer Titanium Carbides (MXene) Flakes on Nickel Foam as a High Efficient Electrocatalyst for Oxygen Evolution, Electrochim. Acta, 2019, 296, p 762–770CrossRef Y. Tang, C.H. Yang, Y.W. Yang, X.T. Yin, W.X. Que, and J.F. Zhu, Three Dimensional Hierarchical Network Structure of S-NiFe2O4 Modified Few-Layer Titanium Carbides (MXene) Flakes on Nickel Foam as a High Efficient Electrocatalyst for Oxygen Evolution, Electrochim. Acta, 2019, 296, p 762–770CrossRef
8.
Zurück zum Zitat S.F. Zhang, W.H. Jiang, Y.W. Li, X.L. Yang, P. Sun, F.M. Liu, X. Yan, Y. Gao, X.S. Liang, J. Ma, and G.Y. Lu, Highly-Sensitivity Acetone Sensors based on Spinel-Type Oxide (NiFe2O4) through Optimization of Porous Structure, Sens. Actuators B, 2019, 291, p 266–274CrossRef S.F. Zhang, W.H. Jiang, Y.W. Li, X.L. Yang, P. Sun, F.M. Liu, X. Yan, Y. Gao, X.S. Liang, J. Ma, and G.Y. Lu, Highly-Sensitivity Acetone Sensors based on Spinel-Type Oxide (NiFe2O4) through Optimization of Porous Structure, Sens. Actuators B, 2019, 291, p 266–274CrossRef
9.
Zurück zum Zitat X.F. Wang, K.M. Sun, S.J. Li, X.Z. Song, L. Cheng, and W. Ma, Porous Javelin-Like NiFe2O4 Nanorods as n-Propanol Sensor with Ultrahigh-Performance, ChemistrySelect, 2018, 3(45), p 12871–12877CrossRef X.F. Wang, K.M. Sun, S.J. Li, X.Z. Song, L. Cheng, and W. Ma, Porous Javelin-Like NiFe2O4 Nanorods as n-Propanol Sensor with Ultrahigh-Performance, ChemistrySelect, 2018, 3(45), p 12871–12877CrossRef
10.
Zurück zum Zitat D. Mandal, A. Gorai, and K. Mandal, Electromagnetic Wave Ttrapping in NiFe2O4 Nano-Hollow Spheres: An Efficient Microwave Absorber, J. Magn. Magn. Mater., 2019, 485, p 43–48CrossRef D. Mandal, A. Gorai, and K. Mandal, Electromagnetic Wave Ttrapping in NiFe2O4 Nano-Hollow Spheres: An Efficient Microwave Absorber, J. Magn. Magn. Mater., 2019, 485, p 43–48CrossRef
11.
Zurück zum Zitat X.C. Gao, J.Q. Bi, W.L. Wang, H.Z. Liu, Y.F. Chen, X.X. Hao, X.N. Sun, and R. Liu, Morphology-Controllable Synthesis of NiFe2O4 Growing on Graphene Nanosheets as Advanced Electrode Material for High Performance Supercapacitors, J. Alloys Compd., 2020, 826, p 154088 (1–10) X.C. Gao, J.Q. Bi, W.L. Wang, H.Z. Liu, Y.F. Chen, X.X. Hao, X.N. Sun, and R. Liu, Morphology-Controllable Synthesis of NiFe2O4 Growing on Graphene Nanosheets as Advanced Electrode Material for High Performance Supercapacitors, J. Alloys Compd., 2020, 826, p 154088 (1–10)
12.
Zurück zum Zitat S.B. Bandgar, M.M. Vadiyar, Y.C. Ling, J.Y. Chang, S.H. Han, A.V. Ghule, and S.S. Kolekar, Metal Precursor Dependent Synthesis of NiFe2O4 Thin Films for High Performance Flexible Symmetric Supercapacitor, ACS Appl. Energy Mater., 2018, 1(2), p 638–648CrossRef S.B. Bandgar, M.M. Vadiyar, Y.C. Ling, J.Y. Chang, S.H. Han, A.V. Ghule, and S.S. Kolekar, Metal Precursor Dependent Synthesis of NiFe2O4 Thin Films for High Performance Flexible Symmetric Supercapacitor, ACS Appl. Energy Mater., 2018, 1(2), p 638–648CrossRef
13.
Zurück zum Zitat J.J. Du, Y.H. Liu, G.C. Yao, Z.S. Hua, X.L. Long, and B. Wang, Microstructure, Mechanical Properties, and Pyroconductivity of NiFe2O4 Composite Reinforced with ZrO2 Fibers, J. Mater. Eng. Perform., 2013, 22(6), p 1776–1782CrossRef J.J. Du, Y.H. Liu, G.C. Yao, Z.S. Hua, X.L. Long, and B. Wang, Microstructure, Mechanical Properties, and Pyroconductivity of NiFe2O4 Composite Reinforced with ZrO2 Fibers, J. Mater. Eng. Perform., 2013, 22(6), p 1776–1782CrossRef
14.
Zurück zum Zitat P. Zarrabian, M. Kalantar, and S.S. Ghasemi, Fabrication and Characterization of Nickel Ferrite Based Inert Anodes for Aluminum Electrolysis, J. Mater. Eng. Perform., 2014, 23(5), p 1656–1664CrossRef P. Zarrabian, M. Kalantar, and S.S. Ghasemi, Fabrication and Characterization of Nickel Ferrite Based Inert Anodes for Aluminum Electrolysis, J. Mater. Eng. Perform., 2014, 23(5), p 1656–1664CrossRef
15.
Zurück zum Zitat D.W. Ni, K.B. Andersen, and V. Esposito, Sintering and Grain Growth Kinetics in La0.85Sr0.15MnO3-Ce0.9Gd0.1O1.95 (LSM-CGO) Porous Composite, J. Eur. Ceram. Soc., 2014, 34(15), p 3769–3778CrossRef D.W. Ni, K.B. Andersen, and V. Esposito, Sintering and Grain Growth Kinetics in La0.85Sr0.15MnO3-Ce0.9Gd0.1O1.95 (LSM-CGO) Porous Composite, J. Eur. Ceram. Soc., 2014, 34(15), p 3769–3778CrossRef
16.
Zurück zum Zitat H.D. Wu, W. Liu, L.F. Lin, Y.H. Li, Z. Tian, G.L. Nie, D. An, H.Z. Li, C.Y. Wang, Z.P. Xie, and S.H. Wu, Sintering Kinetics Involving Densification and Grain Growth of 3D printed Ce–ZrO2/Al2O3, Mater. Chem. Phys., 2020, 239, p 122069 (1–6) H.D. Wu, W. Liu, L.F. Lin, Y.H. Li, Z. Tian, G.L. Nie, D. An, H.Z. Li, C.Y. Wang, Z.P. Xie, and S.H. Wu, Sintering Kinetics Involving Densification and Grain Growth of 3D printed Ce–ZrO2/Al2O3, Mater. Chem. Phys., 2020, 239, p 122069 (1–6)
17.
Zurück zum Zitat A. Talimian and D. Galusek, Aqueous Slip Casting of Translucent Magnesium Aluminate Spinel: Effects of Dispersant Concentration and Solid Loading, Ceram. Int., 2019, 45(8), p 10646–10653CrossRef A. Talimian and D. Galusek, Aqueous Slip Casting of Translucent Magnesium Aluminate Spinel: Effects of Dispersant Concentration and Solid Loading, Ceram. Int., 2019, 45(8), p 10646–10653CrossRef
18.
Zurück zum Zitat Y.H. Sun, W.H. Xiong, C.H. Li, and L. Yuan, Effect of Dispersant Concentration on Preparation of an Ultrahigh Density ZnO-Al2O3 Target by Slip Casting, J. Am. Ceram. Soc., 2009, 92(9), p 2168–2171CrossRef Y.H. Sun, W.H. Xiong, C.H. Li, and L. Yuan, Effect of Dispersant Concentration on Preparation of an Ultrahigh Density ZnO-Al2O3 Target by Slip Casting, J. Am. Ceram. Soc., 2009, 92(9), p 2168–2171CrossRef
19.
Zurück zum Zitat K. Moritz, N. Gerlach, J. Hubálková, and C.G. Aneziris, Pressure Slip Ccasting of Coarse-Grained Alumina-Carbon Materials, Int. J. Appl. Ceram. Technol., 2019, 16(1), p 14–22CrossRef K. Moritz, N. Gerlach, J. Hubálková, and C.G. Aneziris, Pressure Slip Ccasting of Coarse-Grained Alumina-Carbon Materials, Int. J. Appl. Ceram. Technol., 2019, 16(1), p 14–22CrossRef
20.
Zurück zum Zitat Y. Liu, Y.C. Shu, X.Y. Zeng, B.S. Sun, P. Liang, Y. Zhang, C. Qiu, J.H. Yi, and J.L. He, Study on the Sintering Behavior and Characterization of the IGZO Ceramics by Slip Casting, Int. J. Appl. Ceram. Technol., 2019, 16(2), p 585–594CrossRef Y. Liu, Y.C. Shu, X.Y. Zeng, B.S. Sun, P. Liang, Y. Zhang, C. Qiu, J.H. Yi, and J.L. He, Study on the Sintering Behavior and Characterization of the IGZO Ceramics by Slip Casting, Int. J. Appl. Ceram. Technol., 2019, 16(2), p 585–594CrossRef
21.
Zurück zum Zitat X.N. Sun, H.K. Wu, G.Z. Zhu, Y.C. Shan, J.J. Xu, J.T. Li, and E.A. Olevsky, Direct Coarse Powder Aqueous Slip Casting and Pressureless Sintering of Highly Transparent AlON Ceramics, Ceram. Int., 2020, 46(4), p 4850–4856CrossRef X.N. Sun, H.K. Wu, G.Z. Zhu, Y.C. Shan, J.J. Xu, J.T. Li, and E.A. Olevsky, Direct Coarse Powder Aqueous Slip Casting and Pressureless Sintering of Highly Transparent AlON Ceramics, Ceram. Int., 2020, 46(4), p 4850–4856CrossRef
22.
Zurück zum Zitat Z.G. Zhang, J.R. Xu, Z.K. Cao, and G.C. Yao, Fabrication of High-Density NiFe2O4 Ceramics by Slip Casting and Pressureless Sintering, Int. J. Appl. Ceram. Technol., 2020, 17(4), p 1811–1821CrossRef Z.G. Zhang, J.R. Xu, Z.K. Cao, and G.C. Yao, Fabrication of High-Density NiFe2O4 Ceramics by Slip Casting and Pressureless Sintering, Int. J. Appl. Ceram. Technol., 2020, 17(4), p 1811–1821CrossRef
23.
Zurück zum Zitat Z.G. Zhang, G.C. Yao, X. Zhang, J.F. Ma, and H. Lin, Synthesis and Characterization of Nickel Ferrite Nanoparticles via Planetary Ball Milling Assisted Solid-State Reaction, Ceram. Int., 2015, 41(3 Part B), p 4523–4530CrossRef Z.G. Zhang, G.C. Yao, X. Zhang, J.F. Ma, and H. Lin, Synthesis and Characterization of Nickel Ferrite Nanoparticles via Planetary Ball Milling Assisted Solid-State Reaction, Ceram. Int., 2015, 41(3 Part B), p 4523–4530CrossRef
24.
Zurück zum Zitat S. Mitra, A.R. Kulkarni, and O. Prakash, Densification Behavior and Two Stage Master Sintering Curve in Lithium Sodium Niobate Ceramics, Ceram. Int., 2013, 39(S1), p S65–S68CrossRef S. Mitra, A.R. Kulkarni, and O. Prakash, Densification Behavior and Two Stage Master Sintering Curve in Lithium Sodium Niobate Ceramics, Ceram. Int., 2013, 39(S1), p S65–S68CrossRef
25.
Zurück zum Zitat W. Liu, Z.P. Xie, and L. Cheng, Sintering Kinetics Window: An Approach to the Densification Process during the Preparation of Transparent Alumina, Adv. Appl. Ceram., 2015, 114(1), p 33–38CrossRef W. Liu, Z.P. Xie, and L. Cheng, Sintering Kinetics Window: An Approach to the Densification Process during the Preparation of Transparent Alumina, Adv. Appl. Ceram., 2015, 114(1), p 33–38CrossRef
26.
Zurück zum Zitat D. An, W. Liu, Z.P. Xie, H.Z. Li, X.D. Luo, H.D. Wu, M.P. Huang, J.W. Liang, Z. Tian, and R.X. He, A Strategy for Defects Healing in 3D Printed Ceramic Compact via Cold Isostatic Pressing: Sintering Kinetic Window and Microstructure Evolution, J. Am. Ceram. Soc., 2018, 102(5), p 2263–2271CrossRef D. An, W. Liu, Z.P. Xie, H.Z. Li, X.D. Luo, H.D. Wu, M.P. Huang, J.W. Liang, Z. Tian, and R.X. He, A Strategy for Defects Healing in 3D Printed Ceramic Compact via Cold Isostatic Pressing: Sintering Kinetic Window and Microstructure Evolution, J. Am. Ceram. Soc., 2018, 102(5), p 2263–2271CrossRef
27.
Zurück zum Zitat M. Lakusta, I. Danilenko, G. Volkova, L. Loladze, V. Burkhovetskiy, O. Doroshkevich, I. Brykhanova, I. Popova, and T. Konstantinova, Sintering Kinetics of ZrO2 Nanopowders Modified by Group IV Elements, Int. J. Appl. Ceram. Technol., 2019, 16(4), p 1481–1492CrossRef M. Lakusta, I. Danilenko, G. Volkova, L. Loladze, V. Burkhovetskiy, O. Doroshkevich, I. Brykhanova, I. Popova, and T. Konstantinova, Sintering Kinetics of ZrO2 Nanopowders Modified by Group IV Elements, Int. J. Appl. Ceram. Technol., 2019, 16(4), p 1481–1492CrossRef
28.
Zurück zum Zitat M.J. Bannister, Shape Sensitivity of Initial Sintering Equations, J. Am. Ceram. Soc., 1968, 51(10), p 548–553CrossRef M.J. Bannister, Shape Sensitivity of Initial Sintering Equations, J. Am. Ceram. Soc., 1968, 51(10), p 548–553CrossRef
29.
Zurück zum Zitat J.R. Keski and I.B. Cutler, Initial Sintering of MnXO-Al2O3, J. Am. Ceram. Soc., 1968, 51(8), p 440–444CrossRef J.R. Keski and I.B. Cutler, Initial Sintering of MnXO-Al2O3, J. Am. Ceram. Soc., 1968, 51(8), p 440–444CrossRef
30.
Zurück zum Zitat J.L. Woolfrey and M.J. Bannister, Nonisothermal Techniques for Studying Initial-Stage Sintering, J. Am. Ceram. Soc., 1972, 55(8), p 390–394CrossRef J.L. Woolfrey and M.J. Bannister, Nonisothermal Techniques for Studying Initial-Stage Sintering, J. Am. Ceram. Soc., 1972, 55(8), p 390–394CrossRef
31.
Zurück zum Zitat Z.G. Zhang, X.T. Lu, and J.L. Liu, NiFe2O4 Ceramic U-shaped Sleeve Prepared by Slip Casting and Pressureless Sintering, J. Inorg. Mater., 2020, 35(6), p 661–668 Z.G. Zhang, X.T. Lu, and J.L. Liu, NiFe2O4 Ceramic U-shaped Sleeve Prepared by Slip Casting and Pressureless Sintering, J. Inorg. Mater., 2020, 35(6), p 661–668
32.
Zurück zum Zitat T. Senda and R.C. Bradt, Grain Growth in Sintered ZnO and ZnO-Bi2O3 Ceramics, J. Am. Ceram. Soc., 1990, 73(1), p 106–114CrossRef T. Senda and R.C. Bradt, Grain Growth in Sintered ZnO and ZnO-Bi2O3 Ceramics, J. Am. Ceram. Soc., 1990, 73(1), p 106–114CrossRef
33.
Zurück zum Zitat W.Y. Du, Y.L. Ai, W.H. Chen, W. He, J.J. Zhang, Y.Q. Fan, and Y.X. Gong, Grain Growth Kinetics and Growth Mechanism of Columnar Al2O3 Crystals in xNb2O5-7.5La2O3-Al2O3 Ceramic Composites, Ceram. Int., 2019, 45(6), p 6788–6794CrossRef W.Y. Du, Y.L. Ai, W.H. Chen, W. He, J.J. Zhang, Y.Q. Fan, and Y.X. Gong, Grain Growth Kinetics and Growth Mechanism of Columnar Al2O3 Crystals in xNb2O5-7.5La2O3-Al2O3 Ceramic Composites, Ceram. Int., 2019, 45(6), p 6788–6794CrossRef
34.
Zurück zum Zitat M. Vaidya, A. Anupam, J.V. Bharadwaj, C. Srivastava, and B.S. Murty, Grain Growth Kinetics in CoCrFeNi and CoCrFeMnNi High Entropy A Processed by Spark Plasma Sintering, J Alloys Compd., 2019, 791, p 1114–1121CrossRef M. Vaidya, A. Anupam, J.V. Bharadwaj, C. Srivastava, and B.S. Murty, Grain Growth Kinetics in CoCrFeNi and CoCrFeMnNi High Entropy A Processed by Spark Plasma Sintering, J Alloys Compd., 2019, 791, p 1114–1121CrossRef
35.
Zurück zum Zitat S.J. Guo, Powder Sintering Theory, Metallurgical Industry Press, Beijing, 1998 S.J. Guo, Powder Sintering Theory, Metallurgical Industry Press, Beijing, 1998
36.
Zurück zum Zitat B. Wang, J.J. Du, Z. Fang, and P. Hu, Effect of TiO2 Addition on Grain Growth, Anodic Bubble Evolution and Anodic Overvoltage of NiFe2O4-Based Composite Inert Anodes, J. Mater. Eng. Perform., 2017, 26(11), p 5610–5619CrossRef B. Wang, J.J. Du, Z. Fang, and P. Hu, Effect of TiO2 Addition on Grain Growth, Anodic Bubble Evolution and Anodic Overvoltage of NiFe2O4-Based Composite Inert Anodes, J. Mater. Eng. Perform., 2017, 26(11), p 5610–5619CrossRef
37.
Zurück zum Zitat Y. Liu, Y.L. Ai, W. He, W.H. Chen, and J.J. Zhang, Grain Growth Kinetics in Microwave Sintered Graphene Platelets Reinforced ZrO2/Al2O3 Composites, Ceram. Int., 2018, 44(14), p 16421–16427CrossRef Y. Liu, Y.L. Ai, W. He, W.H. Chen, and J.J. Zhang, Grain Growth Kinetics in Microwave Sintered Graphene Platelets Reinforced ZrO2/Al2O3 Composites, Ceram. Int., 2018, 44(14), p 16421–16427CrossRef
38.
Zurück zum Zitat D.C. Jia and G.M. Song, Properties of Inorganic Nonmetallic Materials, Science Press, Beijing, 2008 D.C. Jia and G.M. Song, Properties of Inorganic Nonmetallic Materials, Science Press, Beijing, 2008
Metadaten
Titel
Pressureless Sintering Kinetics of NiFe2O4 Ceramic Fabricated by Slip Casting
verfasst von
Zhigang Zhang
Zhuokun Cao
Guoyin Zu
Jianrong Xu
Publikationsdatum
16.11.2020
Verlag
Springer US
Erschienen in
Journal of Materials Engineering and Performance / Ausgabe 12/2020
Print ISSN: 1059-9495
Elektronische ISSN: 1544-1024
DOI
https://doi.org/10.1007/s11665-020-05313-8

Weitere Artikel der Ausgabe 12/2020

Journal of Materials Engineering and Performance 12/2020 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.