Skip to main content

2021 | OriginalPaper | Buchkapitel

Price Forecasting with Deep Learning in Business to Consumer Markets

verfasst von : Emre Eğriboz, Mehmet S. Aktaş

Erschienen in: Computational Science and Its Applications – ICCSA 2021

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Price forecasting is a challenging and essential problem studied in different markets. Many researchers and institutions, academically and professionally, develop future price forecasting techniques. This study proposes a data collection and processing pipeline to forecast the next day’s price of a product in business to consumer (B2C) markets using the price data obtained from web crawlers, preprocessing steps, the deep features produced by the autoencoder, and the technical indicators. For this purpose, we use web crawlers to collect different airline companies’ ticket prices daily and create a price index. We apply the discrete wavelet transform (DWT) preprocessing method to denoise the price index data, calculate some technical indicators analytically, and extract the deep features of the price data via three different autoencoders, linear, stacked linear, and long short term memory (LSTM). An LSTM forecaster generates forecasts using deep and calculated features. Finally, we measure the effects of autoencoder types, and mentioned features on the forecasting performance. Our study shows that using LSTM autoencoder on denoised time series price data with technical indicators in B2C markets yields promising results.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
4.
Zurück zum Zitat Zhao, K., Wang, C.: Sales forecast in e-commerce using convolutional neural network (2017) Zhao, K., Wang, C.: Sales forecast in e-commerce using convolutional neural network (2017)
7.
Zurück zum Zitat Bandara, K., Shi, P., Bergmeir, C., Hewamalage, H., Tran, Q., Seaman, B.: Sales demand forecast in e-commerce using a long short-term memory neural network methodology. In: Gedeon, T., Wong, K.W., Lee, M. (eds.) ICONIP 2019. LNCS, vol. 11955, pp. 462–474. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-36718-3_39CrossRef Bandara, K., Shi, P., Bergmeir, C., Hewamalage, H., Tran, Q., Seaman, B.: Sales demand forecast in e-commerce using a long short-term memory neural network methodology. In: Gedeon, T., Wong, K.W., Lee, M. (eds.) ICONIP 2019. LNCS, vol. 11955, pp. 462–474. Springer, Cham (2019). https://​doi.​org/​10.​1007/​978-3-030-36718-3_​39CrossRef
12.
Zurück zum Zitat Bao, W., Yue, J., Rao, Y.: A deep learning framework for financial time series using stacked autoencoders and long-short term memory. PloS ONE 12(7), e0180944 (2017)CrossRef Bao, W., Yue, J., Rao, Y.: A deep learning framework for financial time series using stacked autoencoders and long-short term memory. PloS ONE 12(7), e0180944 (2017)CrossRef
15.
Zurück zum Zitat Tas, Y., Baeth, M., Aktas, M.: An approach to standalone provenance systems for big social provenance data. In: 2016 12th International Conference on Semantics, Knowledge and Grids (SKG), pp. 9–16 (2016) Tas, Y., Baeth, M., Aktas, M.: An approach to standalone provenance systems for big social provenance data. In: 2016 12th International Conference on Semantics, Knowledge and Grids (SKG), pp. 9–16 (2016)
16.
Zurück zum Zitat Riveni, M., Nguyen, T., Aktas, M., Dustdar, S.: Application of provenance in social computing: a case study. Concurr. Comput.: Pract. Exp. 31(3), e4894 (2019)CrossRef Riveni, M., Nguyen, T., Aktas, M., Dustdar, S.: Application of provenance in social computing: a case study. Concurr. Comput.: Pract. Exp. 31(3), e4894 (2019)CrossRef
17.
Zurück zum Zitat Baeth, M., Aktas, M.: An approach to custom privacy policy violation detection problems using big social provenance data. Concurr. Comput.: Pract. Exp. 30(21), e4690 (2018)CrossRef Baeth, M., Aktas, M.: An approach to custom privacy policy violation detection problems using big social provenance data. Concurr. Comput.: Pract. Exp. 30(21), e4690 (2018)CrossRef
18.
Zurück zum Zitat Baeth, M., Aktas, M.: Detecting misinformation in social networks using provenance data. Concurr. Comput.: Pract. Exp. 31(3), e4793 (2019)CrossRef Baeth, M., Aktas, M.: Detecting misinformation in social networks using provenance data. Concurr. Comput.: Pract. Exp. 31(3), e4793 (2019)CrossRef
20.
Zurück zum Zitat Tufek, A., Gurbuz, A., Ekuklu, O.F., Aktas, M.S.: Provenance collection platform for the weather research and forecasting model. In: 2018 14th International Conference on Semantics, Knowledge and Grids (SKG), SKG ’18, 14th International Conference on Semantics, Knowledge and Grids (SKG), Guangzhou, China, IEEE, pp. 17–24 (2018). https://doi.org/10.1109/SKG.2018.00009 Tufek, A., Gurbuz, A., Ekuklu, O.F., Aktas, M.S.: Provenance collection platform for the weather research and forecasting model. In: 2018 14th International Conference on Semantics, Knowledge and Grids (SKG), SKG ’18, 14th International Conference on Semantics, Knowledge and Grids (SKG), Guangzhou, China, IEEE, pp. 17–24 (2018). https://​doi.​org/​10.​1109/​SKG.​2018.​00009
21.
Zurück zum Zitat Yazıcı, I., Karabulut, E., Aktas, M.: A data provenance visualization approach. In: The 14th International Conference on Semantics, Knowledge and Grids (2018) Yazıcı, I., Karabulut, E., Aktas, M.: A data provenance visualization approach. In: The 14th International Conference on Semantics, Knowledge and Grids (2018)
22.
Zurück zum Zitat Uygun, Y., Oguz, R., Olmezogullari, E., Aktas, M.: On the large-scale graph data processing for user interface testing in big data science projects. In: IEEE BigData 2020, pp. 2049–2056. IEEE (2020) Uygun, Y., Oguz, R., Olmezogullari, E., Aktas, M.: On the large-scale graph data processing for user interface testing in big data science projects. In: IEEE BigData 2020, pp. 2049–2056. IEEE (2020)
23.
Zurück zum Zitat Olmezogullari, E., Aktas, M.: Representation of click-stream data sequences for learning user navigational behavior by using embeddings. In: In: IEEE BigData 2020, pp. 3173–3179. IEEE (2020) Olmezogullari, E., Aktas, M.: Representation of click-stream data sequences for learning user navigational behavior by using embeddings. In: In: IEEE BigData 2020, pp. 3173–3179. IEEE (2020)
24.
Zurück zum Zitat Li, Y., Cao, H.: Prediction for tourism flow based on LSTM neural network. Procedia Comput. Sci. 129, 277–283 (2018)CrossRef Li, Y., Cao, H.: Prediction for tourism flow based on LSTM neural network. Procedia Comput. Sci. 129, 277–283 (2018)CrossRef
28.
Zurück zum Zitat Goodfellow, I., Bengio, Y., Courville, A., Bengio, Y.: Deep Learning, vol. 1. MIT Press, Cambridge (2016)MATH Goodfellow, I., Bengio, Y., Courville, A., Bengio, Y.: Deep Learning, vol. 1. MIT Press, Cambridge (2016)MATH
29.
Zurück zum Zitat Cao, J., Li, Z., Li, J.: Financial time series forecasting model based on CEEMDAN and LSTM. Physica A 519, 127–139 (2019)CrossRef Cao, J., Li, Z., Li, J.: Financial time series forecasting model based on CEEMDAN and LSTM. Physica A 519, 127–139 (2019)CrossRef
30.
Zurück zum Zitat Bouktif, S., Fiaz, A., Ouni, A., Serhani, M.A.: Optimal deep learning LSTM model for electric load forecasting using feature selection and genetic algorithm: comparison with machine learning approaches. Energies 11(7), 1636 (2018)CrossRef Bouktif, S., Fiaz, A., Ouni, A., Serhani, M.A.: Optimal deep learning LSTM model for electric load forecasting using feature selection and genetic algorithm: comparison with machine learning approaches. Energies 11(7), 1636 (2018)CrossRef
31.
Zurück zum Zitat Mallat, S.G.: A theory for multiresolution signal decomposition: the wavelet representation. IEEE Trans. Pattern Anal. Mach. Intell. 11(7), 674–693 (1989)CrossRef Mallat, S.G.: A theory for multiresolution signal decomposition: the wavelet representation. IEEE Trans. Pattern Anal. Mach. Intell. 11(7), 674–693 (1989)CrossRef
32.
Zurück zum Zitat Ramsey, J.B., Lampart, C.: The decomposition of economic relationships by time scale using wavelets: expenditure and income. Stud. Nonlinear Dyn. Econ. 3(1) (1998) Ramsey, J.B., Lampart, C.: The decomposition of economic relationships by time scale using wavelets: expenditure and income. Stud. Nonlinear Dyn. Econ. 3(1) (1998)
33.
Zurück zum Zitat Chollet, F., et al.: Deep Learning with Python, vol. 361. Manning, New York (2018) Chollet, F., et al.: Deep Learning with Python, vol. 361. Manning, New York (2018)
Metadaten
Titel
Price Forecasting with Deep Learning in Business to Consumer Markets
verfasst von
Emre Eğriboz
Mehmet S. Aktaş
Copyright-Jahr
2021
DOI
https://doi.org/10.1007/978-3-030-86979-3_40