Skip to main content
Erschienen in: Meccanica 14/2019

26.10.2019

Primary and secondary resonances in pipes conveying fluid with the fractional viscoelastic model

verfasst von: M. Javadi, M. A. Noorian, S. Irani

Erschienen in: Meccanica | Ausgabe 14/2019

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Nonlinear forced vibrations of a fractional viscoelastic pipe conveying fluid exposed to the time-dependent excitations is investigated in the present work. Attention is focused in particular on the primary and secondary resonances with the Kelvin–Voigt fractional order constitutive relationship model. The nonlinear geometric partial differential equations due to stretching effect have been expressed by assumptions with Von Karman’s strain-displacement relation and Euler–Bernoulli beam theory. Viscoelastic fractional model for damping and stiffness, and also plug flow model for fluid flow are considered to derive the equation of motion. Based on the Galerkin truncation, the coupled Fluid-Solid interaction nonlinear equation transferred to ordinary differential equations. The method of multiple scales is adopted to analyze steady-state solutions for the primary, superharmonic, and subharmonic resonances. Finally, the detailed parametric studies on the nonlinear dynamic behavior are discussed. Results delineate that the fractional derivative order and the retardation time have significant effects on the oscillation exhibited for different values of flow velocity.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Zhang M, Shen Y, Xiao L, Wenzhong Q (2017) Application of subharmonic resonance for the detection of bolted joint looseness. Nonlinear Dyn 88(3):1643–1653 Zhang M, Shen Y, Xiao L, Wenzhong Q (2017) Application of subharmonic resonance for the detection of bolted joint looseness. Nonlinear Dyn 88(3):1643–1653
2.
Zurück zum Zitat Andreaus U, Baragatti P (2012) Experimental damage detection of cracked beams by using nonlinear characteristics of forced response. Mech Syst Signal Process 31:382–404ADS Andreaus U, Baragatti P (2012) Experimental damage detection of cracked beams by using nonlinear characteristics of forced response. Mech Syst Signal Process 31:382–404ADS
3.
Zurück zum Zitat Mohammadi Ghazi R, Büyüköztürk O (2016) Damage detection with small data set using energy-based nonlinear features. Struct Control Health Monit 23(2):333–348 Mohammadi Ghazi R, Büyüköztürk O (2016) Damage detection with small data set using energy-based nonlinear features. Struct Control Health Monit 23(2):333–348
4.
Zurück zum Zitat Andreaus U, Baragatti P (2011) Cracked beam identification by numerically analysing the nonlinear behaviour of the harmonically forced response. J Sound Vib 330(4):721–742ADS Andreaus U, Baragatti P (2011) Cracked beam identification by numerically analysing the nonlinear behaviour of the harmonically forced response. J Sound Vib 330(4):721–742ADS
5.
Zurück zum Zitat Peng ZK, Lang ZQ, Billings SA (2007) Crack detection using nonlinear output frequency response functions. J Sound Vib 301(3–5):777–788ADS Peng ZK, Lang ZQ, Billings SA (2007) Crack detection using nonlinear output frequency response functions. J Sound Vib 301(3–5):777–788ADS
6.
Zurück zum Zitat Tsyfansky SL, Beresnevich VI (2000) Non-linear vibration method for detection of fatigue cracks in aircraft wings. J Sound Vib 236(1):49–60ADSMATH Tsyfansky SL, Beresnevich VI (2000) Non-linear vibration method for detection of fatigue cracks in aircraft wings. J Sound Vib 236(1):49–60ADSMATH
7.
Zurück zum Zitat Paidoussis MP (2014) Fluid-structure interactions : slender structures and axial flow, vol 1, 2nd edn. Elsevier, Amsterdam Paidoussis MP (2014) Fluid-structure interactions : slender structures and axial flow, vol 1, 2nd edn. Elsevier, Amsterdam
8.
Zurück zum Zitat Lin Y-H, Tsai Y-K (1997) Nonlinear vibrations of timoshenko pipes conveying fluid. Int J Solids Struct 34(23):2945–2956MATH Lin Y-H, Tsai Y-K (1997) Nonlinear vibrations of timoshenko pipes conveying fluid. Int J Solids Struct 34(23):2945–2956MATH
9.
Zurück zum Zitat Semler C, Paıdoussis MP (1996) Nonlinear analysis of the parametric resonances of a planar fluid-conveying cantilevered pipe. J Fluids Struct 10(7):787–825 Semler C, Paıdoussis MP (1996) Nonlinear analysis of the parametric resonances of a planar fluid-conveying cantilevered pipe. J Fluids Struct 10(7):787–825
10.
Zurück zum Zitat Semler C, Li GX, Paıdoussis MP (1994) The non-linear equations of motion of pipes conveying fluid. J Sound Vib 169(5):577–599ADSMATH Semler C, Li GX, Paıdoussis MP (1994) The non-linear equations of motion of pipes conveying fluid. J Sound Vib 169(5):577–599ADSMATH
11.
Zurück zum Zitat Lee S-I, Chung J (2002) New non-linear modelling for vibration analysis of a straight pipe conveying fluid. J Sound Vib 254(2):313–325ADS Lee S-I, Chung J (2002) New non-linear modelling for vibration analysis of a straight pipe conveying fluid. J Sound Vib 254(2):313–325ADS
12.
Zurück zum Zitat Szabó Z (2003) Nonlinear analysis of a cantilever pipe containing pulsatile flow. Meccanica 38(1):163–174MathSciNetMATH Szabó Z (2003) Nonlinear analysis of a cantilever pipe containing pulsatile flow. Meccanica 38(1):163–174MathSciNetMATH
13.
Zurück zum Zitat Ni Q, Tang M, Luo Y, Wang Y, Wang L (2014) Internal-external resonance of a curved pipe conveying fluid resting on a nonlinear elastic foundation. Nonlinear Dyn 76(1):867–886MathSciNetMATH Ni Q, Tang M, Luo Y, Wang Y, Wang L (2014) Internal-external resonance of a curved pipe conveying fluid resting on a nonlinear elastic foundation. Nonlinear Dyn 76(1):867–886MathSciNetMATH
14.
Zurück zum Zitat Mao X-Y, Ding H, Chen L-Q (2016) Steady-state response of a fluid-conveying pipe with 3: 1 internal resonance in supercritical regime. Nonlinear Dyn 86(2):795–809 Mao X-Y, Ding H, Chen L-Q (2016) Steady-state response of a fluid-conveying pipe with 3: 1 internal resonance in supercritical regime. Nonlinear Dyn 86(2):795–809
15.
Zurück zum Zitat Liu Z-Y, Wang L, Sun X-P (2018) Nonlinear forced vibration of cantilevered pipes conveying fluid. Acta Mech Solida Sin 31(1):32–50ADS Liu Z-Y, Wang L, Sun X-P (2018) Nonlinear forced vibration of cantilevered pipes conveying fluid. Acta Mech Solida Sin 31(1):32–50ADS
16.
Zurück zum Zitat Rong Bao L, Xiao-Ting KR, Ni X-J, Tao L, Wang G-P (2018) Nonlinear dynamics analysis of pipe conveying fluid by riccati absolute nodal coordinate transfer matrix method. Nonlinear Dyn 92(2):699–708 Rong Bao L, Xiao-Ting KR, Ni X-J, Tao L, Wang G-P (2018) Nonlinear dynamics analysis of pipe conveying fluid by riccati absolute nodal coordinate transfer matrix method. Nonlinear Dyn 92(2):699–708
17.
Zurück zum Zitat Tang Y, Yang T (2018) Post-buckling behavior and nonlinear vibration analysis of a fluid-conveying pipe composed of functionally graded material. Compos Struct 185:393–400 Tang Y, Yang T (2018) Post-buckling behavior and nonlinear vibration analysis of a fluid-conveying pipe composed of functionally graded material. Compos Struct 185:393–400
18.
Zurück zum Zitat Taylor G, Ceballes S, Abdelkefi A (2018) Insights on the point of contact analysis and characterization of constrained pipelines conveying fluid. Nonlinear Dyn 93(3):1261–1275 Taylor G, Ceballes S, Abdelkefi A (2018) Insights on the point of contact analysis and characterization of constrained pipelines conveying fluid. Nonlinear Dyn 93(3):1261–1275
19.
Zurück zum Zitat Bagley Ronald L, Torvik PJ (1983) A theoretical basis for the application of fractional calculus to viscoelasticity. J Rheol 27(3):201–210ADSMATH Bagley Ronald L, Torvik PJ (1983) A theoretical basis for the application of fractional calculus to viscoelasticity. J Rheol 27(3):201–210ADSMATH
20.
Zurück zum Zitat Bagley Ronald L, Torvik J (1983) Fractional calculus-a different approach to the analysis of viscoelastically damped structures. AIAA J 21(5):741–748ADSMATH Bagley Ronald L, Torvik J (1983) Fractional calculus-a different approach to the analysis of viscoelastically damped structures. AIAA J 21(5):741–748ADSMATH
21.
Zurück zum Zitat Caputo M, Mainardi F (1971) A new dissipation model based on memory mechanism. Pure Appl Geophys 91(1):134–147ADSMATH Caputo M, Mainardi F (1971) A new dissipation model based on memory mechanism. Pure Appl Geophys 91(1):134–147ADSMATH
22.
Zurück zum Zitat Caputo M, Mainardi F (1971) Linear models of dissipation in anelastic solids. La Rivista del Nuovo Cimento (1971–1977) 1(2):161–198ADS Caputo M, Mainardi F (1971) Linear models of dissipation in anelastic solids. La Rivista del Nuovo Cimento (1971–1977) 1(2):161–198ADS
23.
Zurück zum Zitat Oldham K, Spanier J (1974) The fractional calculus theory and applications of differentiation and integration to arbitrary order, vol 111. Elsevier, AmsterdamMATH Oldham K, Spanier J (1974) The fractional calculus theory and applications of differentiation and integration to arbitrary order, vol 111. Elsevier, AmsterdamMATH
24.
Zurück zum Zitat Rossikhin Y, Shitikova MV (2012) On fallacies in the decision between the caputo and Riemann–Liouville fractional derivatives for the analysis of the dynamic response of a nonlinear viscoelastic oscillator. Mech Res Commun 45:22–27 Rossikhin Y, Shitikova MV (2012) On fallacies in the decision between the caputo and Riemann–Liouville fractional derivatives for the analysis of the dynamic response of a nonlinear viscoelastic oscillator. Mech Res Commun 45:22–27
25.
Zurück zum Zitat Yang T-Z, Fang B (2012) Stability in parametric resonance of an axially moving beam constituted by fractional order material. Arch Appl Mech 82(12):1763–1770MATH Yang T-Z, Fang B (2012) Stability in parametric resonance of an axially moving beam constituted by fractional order material. Arch Appl Mech 82(12):1763–1770MATH
26.
Zurück zum Zitat Di Paola M, Heuer R, Pirrotta A (2013) Fractional visco-elastic Euler–Bernoulli beam. Int J Solids Struct 50(22–23):3505–3510 Di Paola M, Heuer R, Pirrotta A (2013) Fractional visco-elastic Euler–Bernoulli beam. Int J Solids Struct 50(22–23):3505–3510
27.
Zurück zum Zitat Yang Tianzhi, Fang B (2013) Asymptotic analysis of an axially viscoelastic string constituted by a fractional differentiation law. Int J Non-Linear Mech 49:170–174 Yang Tianzhi, Fang B (2013) Asymptotic analysis of an axially viscoelastic string constituted by a fractional differentiation law. Int J Non-Linear Mech 49:170–174
28.
Zurück zum Zitat Baleanu D, Diethelm K, Scalas E, Trujillo JJ (2016) Fractional calculus. World Scientific Publishing Company, SingaporeMATH Baleanu D, Diethelm K, Scalas E, Trujillo JJ (2016) Fractional calculus. World Scientific Publishing Company, SingaporeMATH
29.
Zurück zum Zitat Colinas-Armijo N, Cutrona S, Di Paola M, Pirrotta A (2017) Fractional viscoelastic beam under torsion. Commun Nonlinear Sci Numer Simul 48:278–287ADSMathSciNet Colinas-Armijo N, Cutrona S, Di Paola M, Pirrotta A (2017) Fractional viscoelastic beam under torsion. Commun Nonlinear Sci Numer Simul 48:278–287ADSMathSciNet
30.
Zurück zum Zitat Permoon MR, Haddadpour H, Javadi M (2018) Nonlinear vibration of fractional viscoelastic plate: primary, subharmonic, and superharmonic response. Int J Non-Linear Mech 99:154–164 Permoon MR, Haddadpour H, Javadi M (2018) Nonlinear vibration of fractional viscoelastic plate: primary, subharmonic, and superharmonic response. Int J Non-Linear Mech 99:154–164
31.
Zurück zum Zitat Asgari M, Permoon MR, Haddadpour H (2017) Stability analysis of a fractional viscoelastic plate strip in supersonic flow under axial loading. Meccanica 52(7):1495–1502MathSciNetMATH Asgari M, Permoon MR, Haddadpour H (2017) Stability analysis of a fractional viscoelastic plate strip in supersonic flow under axial loading. Meccanica 52(7):1495–1502MathSciNetMATH
32.
Zurück zum Zitat Agrawal OP (2004) Analytical solution for stochastic response of a fractionally damped beam. J Vib Acoust 126(4):561–566 Agrawal OP (2004) Analytical solution for stochastic response of a fractionally damped beam. J Vib Acoust 126(4):561–566
33.
Zurück zum Zitat Giuseppe F, Adolfo S, Massimiliano Z (2013) A non-local two-dimensional foundation model. Arch Appl Mech 83(2):253–272MATH Giuseppe F, Adolfo S, Massimiliano Z (2013) A non-local two-dimensional foundation model. Arch Appl Mech 83(2):253–272MATH
34.
Zurück zum Zitat Di Lorenzo S, Di Paola M, Pinnola FP, Pirrotta A (2014) Stochastic response of fractionally damped beams. Probab Eng Mech 35:37–43 Di Lorenzo S, Di Paola M, Pinnola FP, Pirrotta A (2014) Stochastic response of fractionally damped beams. Probab Eng Mech 35:37–43
35.
Zurück zum Zitat Spanos PD, Malara G (2014) Nonlinear random vibrations of beams with fractional derivative elements. J Eng Mech 140(9):04014069 Spanos PD, Malara G (2014) Nonlinear random vibrations of beams with fractional derivative elements. J Eng Mech 140(9):04014069
36.
Zurück zum Zitat Wojciech S, Tomasz B, Christian L (2015) Fractional Euler–Bernoulli beams: theory, numerical study and experimental validation. Eur J Mech-A/Solids 54:243–251MathSciNet Wojciech S, Tomasz B, Christian L (2015) Fractional Euler–Bernoulli beams: theory, numerical study and experimental validation. Eur J Mech-A/Solids 54:243–251MathSciNet
37.
Zurück zum Zitat Di Paola M, Scimemi GF (2016) Finite element method on fractional visco-elastic frames. Comput Struct 164:15–22 Di Paola M, Scimemi GF (2016) Finite element method on fractional visco-elastic frames. Comput Struct 164:15–22
38.
Zurück zum Zitat Jan Kazimierz Freundlich (2016) Dynamic response of a simply supported viscoelastic beam of a fractional derivative type to a moving force load. J Theor Appl Mech 54(4):1433–1445 Jan Kazimierz Freundlich (2016) Dynamic response of a simply supported viscoelastic beam of a fractional derivative type to a moving force load. J Theor Appl Mech 54(4):1433–1445
39.
Zurück zum Zitat Gioacchino A, Di Mario P, Giuseppe F, Pinnola FP (2018) On the dynamics of non-local fractional viscoelastic beams under stochastic agencies. Compos Part B Eng 137:102–110 Gioacchino A, Di Mario P, Giuseppe F, Pinnola FP (2018) On the dynamics of non-local fractional viscoelastic beams under stochastic agencies. Compos Part B Eng 137:102–110
40.
Zurück zum Zitat Liaskos KB, Pantelous AA, Kougioumtzoglou IA, Meimaris AT (2018) Implicit analytic solutions for the linear stochastic partial differential beam equation with fractional derivative terms. Syst Control Lett 121:38–49MathSciNetMATH Liaskos KB, Pantelous AA, Kougioumtzoglou IA, Meimaris AT (2018) Implicit analytic solutions for the linear stochastic partial differential beam equation with fractional derivative terms. Syst Control Lett 121:38–49MathSciNetMATH
41.
Zurück zum Zitat Jan F (2019) Transient vibrations of a fractional Kelvin–Voigt viscoelastic cantilever beam with a tip mass and subjected to a base excitation. J Sound Vib 438:99–115 Jan F (2019) Transient vibrations of a fractional Kelvin–Voigt viscoelastic cantilever beam with a tip mass and subjected to a base excitation. J Sound Vib 438:99–115
42.
Zurück zum Zitat Sinir BG, Donmez DD (2015) The analysis of nonlinear vibrations of a pipe conveying an ideal fluid. Eur J Mech-B/Fluids 52:38–44MathSciNetMATH Sinir BG, Donmez DD (2015) The analysis of nonlinear vibrations of a pipe conveying an ideal fluid. Eur J Mech-B/Fluids 52:38–44MathSciNetMATH
43.
Zurück zum Zitat Tang Y, Yang T, Fang B (2018) Fractional dynamics of fluid-conveying pipes made of polymer-like materials. Acta Mech Solida Sin 31(2):243–258 Tang Y, Yang T, Fang B (2018) Fractional dynamics of fluid-conveying pipes made of polymer-like materials. Acta Mech Solida Sin 31(2):243–258
44.
Zurück zum Zitat Tang Y, Zhen Y, Fang B (2018) Nonlinear vibration analysis of a fractional dynamic model for the viscoelastic pipe conveying fluid. Appl Math Model 56:123–136MathSciNet Tang Y, Zhen Y, Fang B (2018) Nonlinear vibration analysis of a fractional dynamic model for the viscoelastic pipe conveying fluid. Appl Math Model 56:123–136MathSciNet
45.
Zurück zum Zitat Javadi M, Noorian MA, Irani S (2019) Stability analysis of pipes conveying fluid with fractional viscoelastic model. Meccanica 54(3):399–410MathSciNet Javadi M, Noorian MA, Irani S (2019) Stability analysis of pipes conveying fluid with fractional viscoelastic model. Meccanica 54(3):399–410MathSciNet
46.
Zurück zum Zitat Amabili Marco (2008) Nonlinear vibrations and stability of shells and plates. Cambridge University Press, CambridgeMATH Amabili Marco (2008) Nonlinear vibrations and stability of shells and plates. Cambridge University Press, CambridgeMATH
Metadaten
Titel
Primary and secondary resonances in pipes conveying fluid with the fractional viscoelastic model
verfasst von
M. Javadi
M. A. Noorian
S. Irani
Publikationsdatum
26.10.2019
Verlag
Springer Netherlands
Erschienen in
Meccanica / Ausgabe 14/2019
Print ISSN: 0025-6455
Elektronische ISSN: 1572-9648
DOI
https://doi.org/10.1007/s11012-019-01068-2

Weitere Artikel der Ausgabe 14/2019

Meccanica 14/2019 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.