Skip to main content
Erschienen in:
Buchtitelbild

2019 | OriginalPaper | Buchkapitel

1. Principles of Instrumentation Amplifiers

verfasst von : Leila Safari, Giuseppe Ferri, Shahram Minaei, Vincenzo Stornelli

Erschienen in: Current-Mode Instrumentation Amplifiers

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

This chapter is dedicated to the general principles of the Instrumentation Amplifier, a particular type of differential amplifier hereafter called IA. Its basic applications are reviewed. The definitions of Common-Mode Rejection Ratio (CMRR) as the most important property of IAs are discussed. It is shown that the CMRR definition is different in single output and fully differential circuits. The general formula for derivation of CMRR in cascaded stages is given. Then, the well-known classical 3-Op-Amp IA is studied. Its important parameters, limitations and disadvantageous are discussed. The chapter includes also a brief introduction and the classification of IAs developed with current-mode techniques here after called Current-Mode Instrumentation Amplifier (CMIA).

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Kitchin C., Counts L. (2006), A Designer’s guide to instrumentation amplifiers, 3rd Edition, Analog Device, USA. Kitchin C., Counts L. (2006), A Designer’s guide to instrumentation amplifiers, 3rd Edition, Analog Device, USA.
2.
Zurück zum Zitat Schoenfeld R. L. (1970), Common-Mode Rejection ratio-two definitions, IEEE Transactions on Biomedical Engineering, BME-17(1):73–74.CrossRef Schoenfeld R. L. (1970), Common-Mode Rejection ratio-two definitions, IEEE Transactions on Biomedical Engineering, BME-17(1):73–74.CrossRef
3.
Zurück zum Zitat Pallas-Areny R., Webster J. G. (1991), Common-Mode rejection ratio for cascaded differential amplifier stages, IEEE Transactions on Instrumentation and Measurement, 40(4):677–681.CrossRef Pallas-Areny R., Webster J. G. (1991), Common-Mode rejection ratio for cascaded differential amplifier stages, IEEE Transactions on Instrumentation and Measurement, 40(4):677–681.CrossRef
4.
Zurück zum Zitat Pallas-Areny R., Webster J. G. (1991),Common-Mode rejection ratio in differential amplifiers, IEEE Transactions on Instrumentation and Measurement, 40(4):669–676.CrossRef Pallas-Areny R., Webster J. G. (1991),Common-Mode rejection ratio in differential amplifiers, IEEE Transactions on Instrumentation and Measurement, 40(4):669–676.CrossRef
5.
Zurück zum Zitat Pennisi S., Scotti G., Trifiletti A. (2011), Avoiding the Gain-Bandwidth trade off in feedback amplifiers, IEEE Transactions on Circuits and Systems I: Regular Papers, 58(9): 2108–2113.MathSciNetCrossRef Pennisi S., Scotti G., Trifiletti A. (2011), Avoiding the Gain-Bandwidth trade off in feedback amplifiers, IEEE Transactions on Circuits and Systems I: Regular Papers, 58(9): 2108–2113.MathSciNetCrossRef
6.
Zurück zum Zitat Bruun E. (1993), Feedback analysis of transimpedance operational amplifier circuits, IEEE Transactions on Circuits and Systems I: Fundamental Theory and Applications, 40(4):275–278.CrossRef Bruun E. (1993), Feedback analysis of transimpedance operational amplifier circuits, IEEE Transactions on Circuits and Systems I: Fundamental Theory and Applications, 40(4):275–278.CrossRef
7.
Zurück zum Zitat Wilson B., Lidgey F. J., Toumazou C. (1988), Current mode signal processing circuits, IEEE International Symposium on Circuits and Systems, Espoo, Finland, 3:2665–2668. Wilson B., Lidgey F. J., Toumazou C. (1988), Current mode signal processing circuits, IEEE International Symposium on Circuits and Systems, Espoo, Finland, 3:2665–2668.
8.
Zurück zum Zitat Arbel A. F. (1991), Current-mode signal processing, 17th Convention of Electrical and Electronics Engineers in Israel, Tel Aviv, 1991. Arbel A. F. (1991), Current-mode signal processing, 17th Convention of Electrical and Electronics Engineers in Israel, Tel Aviv, 1991.
9.
Zurück zum Zitat Toumazou C., Lidgey F. J., Haigh D. (1992), Analogue IC design: the current-mode approach, IET. Toumazou C., Lidgey F. J., Haigh D. (1992), Analogue IC design: the current-mode approach, IET.
10.
Zurück zum Zitat Safari L., Minaei S. (2013), A novel resistor-free electronically adjustable current-mode instrumentation amplifier, Circuits, Systems and Signal Processing, 32(3):1025–1038.CrossRef Safari L., Minaei S. (2013), A novel resistor-free electronically adjustable current-mode instrumentation amplifier, Circuits, Systems and Signal Processing, 32(3):1025–1038.CrossRef
11.
Zurück zum Zitat Ghallab Y. H., Badawy W., Kaler K. V. I. S., Maundy B. J. (2005), A novel current-mode instrumentation amplifier based on operational floating current conveyor,IEEE Transactions on Instrumentation and Measurement, 54(5):1941–1949.CrossRef Ghallab Y. H., Badawy W., Kaler K. V. I. S., Maundy B. J. (2005), A novel current-mode instrumentation amplifier based on operational floating current conveyor,IEEE Transactions on Instrumentation and Measurement, 54(5):1941–1949.CrossRef
12.
Zurück zum Zitat Cini U. (2014), A low-offset high CMRR current-mode instrumentation amplifier using differential difference current conveyor, IEEE International Conference on Electronics, Circuits and Systems (ICECS), 2014. Cini U. (2014), A low-offset high CMRR current-mode instrumentation amplifier using differential difference current conveyor, IEEE International Conference on Electronics, Circuits and Systems (ICECS), 2014.
13.
Zurück zum Zitat Hassan T., Mahmoud S. A. (2014), New CMOS DVCC realization and applications to instrumentation amplifier and active-RC filters, International Journal of Electronics and Communication (AEÜ), 64:47–55.CrossRef Hassan T., Mahmoud S. A. (2014), New CMOS DVCC realization and applications to instrumentation amplifier and active-RC filters, International Journal of Electronics and Communication (AEÜ), 64:47–55.CrossRef
14.
Zurück zum Zitat Yang T. Y., Liu K. Y., Wang H. Y. (2011), Novel high-CMRR DVCC-based instrumentation amplifier, 2nd International Conference on Engineering and Industries (ICEI), 2011. Yang T. Y., Liu K. Y., Wang H. Y. (2011), Novel high-CMRR DVCC-based instrumentation amplifier, 2nd International Conference on Engineering and Industries (ICEI), 2011.
15.
Zurück zum Zitat Yuce E.(2011), Various current-mode and voltage-mode instrumentation amplifier topologies suitable for integration, Journal of Circuits, Systems, and Computers,19(3):689–699.CrossRef Yuce E.(2011), Various current-mode and voltage-mode instrumentation amplifier topologies suitable for integration, Journal of Circuits, Systems, and Computers,19(3):689–699.CrossRef
Metadaten
Titel
Principles of Instrumentation Amplifiers
verfasst von
Leila Safari
Giuseppe Ferri
Shahram Minaei
Vincenzo Stornelli
Copyright-Jahr
2019
DOI
https://doi.org/10.1007/978-3-030-01343-1_1

Neuer Inhalt