Skip to main content

2022 | OriginalPaper | Buchkapitel

9. Printed Flexible Electrochemical Energy Storage Devices

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Printed flexible electronic devices can be portable, lightweight, bendable, and even stretchable, wearable, or implantable and therefore have great potential for applications such as roll-up displays, smart mobile devices, wearable electronics, implantable biosensors, and so on. To realize fully printed flexible devices with matchable or integrable power sources, printed flexible electrochemical energy storage units with high energy storage and power density have been investigated. Many works are dedicated to exploring suitable and effective electrode/electrolyte materials as well as more preferable cell configuration and structural designs. As a result, exciting progress has been achieved in developing high-performance printed flexible electrochemical energy storage devices, mainly including lithium-ion and zinc-based batteries, and supercapacitors. In addition, printing nanomaterials have made significant advances for energy electrochemical storage applications. With these advancements, future flexible power sources that combine both outstanding electrochemical and mechanical performance will boost the development and commercialization of next-generation flexible electronics. This chapter will briefly review the advances of printed flexible electrochemical energy storage devices, including evolution of electrochemical energy storage, working principles of battery and supercapacitor, as well as various printed flexible batteries and supercapacitors, covering printable organic, inorganic materials and nanomaterials, printed components, integration processes, and suitable applications.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
Zurück zum Zitat Abdelkader AM, Karim N, Valles C, Afroj S, Novoselov KS, Yeates SG (2017) Ultraflexible and robust graphene supercapacitors printed on textiles for wearable electronics applications. 2D Mater 4:035016CrossRef Abdelkader AM, Karim N, Valles C, Afroj S, Novoselov KS, Yeates SG (2017) Ultraflexible and robust graphene supercapacitors printed on textiles for wearable electronics applications. 2D Mater 4:035016CrossRef
Zurück zum Zitat Ambrosi A, Pumera M (2016) 3D-printing technologies for electrochemical applications. Chem Soc Rev 45:2740–2755CrossRef Ambrosi A, Pumera M (2016) 3D-printing technologies for electrochemical applications. Chem Soc Rev 45:2740–2755CrossRef
Zurück zum Zitat Aravindan V, Sundaramurthy J, Kumar PS, Shubha N, Ling WC, Ramakrishna S, Madhavi S (2013) A novel strategy to construct high performance lithium-ion cells using one dimensional electrospun nanofibers, electrodes and separators. Nanoscale 5(21):10636–10645CrossRef Aravindan V, Sundaramurthy J, Kumar PS, Shubha N, Ling WC, Ramakrishna S, Madhavi S (2013) A novel strategy to construct high performance lithium-ion cells using one dimensional electrospun nanofibers, electrodes and separators. Nanoscale 5(21):10636–10645CrossRef
Zurück zum Zitat Beidaghi M, Gogotsi Y (2014) Capacitive energy storage in micro-scale devices: recent advances in design and fabrication of micro-supercapacitors. Energy Environ Sci 7:867–884CrossRef Beidaghi M, Gogotsi Y (2014) Capacitive energy storage in micro-scale devices: recent advances in design and fabrication of micro-supercapacitors. Energy Environ Sci 7:867–884CrossRef
Zurück zum Zitat Berchmans S, Bandodkar AJ, Jia W, Ramίrez J, Meng YS, Wang J (2014) An epidermal alkaline rechargeable Ag–Zn printable tattoo battery for wearable electronics. J Mater Chem A 2:15788–15795CrossRef Berchmans S, Bandodkar AJ, Jia W, Ramίrez J, Meng YS, Wang J (2014) An epidermal alkaline rechargeable Ag–Zn printable tattoo battery for wearable electronics. J Mater Chem A 2:15788–15795CrossRef
Zurück zum Zitat Berckmans G, Messagie M, Smekens J, Omar N, Vanhaverbeke L, Van Mierlo J (2017) Cost projection of state of the art lithium-ion batteries for electric vehicles up to 2030. Energies 10(9):1314CrossRef Berckmans G, Messagie M, Smekens J, Omar N, Vanhaverbeke L, Van Mierlo J (2017) Cost projection of state of the art lithium-ion batteries for electric vehicles up to 2030. Energies 10(9):1314CrossRef
Zurück zum Zitat Blake AJ, Kohlmeyer RR, Hardin JO, Carmona EA, Maruyama B, Berrigan JD, Huang H, Durstock MF (2017) 3D printable ceramic–polymer electrolytes for flexible high-performance Li-ion batteries with enhanced thermal stability. Adv Energy Mater 7(14):1602920CrossRef Blake AJ, Kohlmeyer RR, Hardin JO, Carmona EA, Maruyama B, Berrigan JD, Huang H, Durstock MF (2017) 3D printable ceramic–polymer electrolytes for flexible high-performance Li-ion batteries with enhanced thermal stability. Adv Energy Mater 7(14):1602920CrossRef
Zurück zum Zitat Bonaccorso F, Bartolotta A, Coleman JN, Backes C (2016) 2D crystal-based functional inks. Adv Mater 28:6136–6166CrossRef Bonaccorso F, Bartolotta A, Coleman JN, Backes C (2016) 2D crystal-based functional inks. Adv Mater 28:6136–6166CrossRef
Zurück zum Zitat Chang Q, Li L, Sai L, Shi W, Huang L (2018) Water-soluble hybrid graphene ink for gravure-printed planar supercapacitors. Adv Electron Mater 4:1800059CrossRef Chang Q, Li L, Sai L, Shi W, Huang L (2018) Water-soluble hybrid graphene ink for gravure-printed planar supercapacitors. Adv Electron Mater 4:1800059CrossRef
Zurück zum Zitat Cheng X, Pan J, Zhao Y, Liao M, Peng H (2018) Gel polymer electrolytes for electrochemical energy storage. Adv Energy Mater 8(97):1702184CrossRef Cheng X, Pan J, Zhao Y, Liao M, Peng H (2018) Gel polymer electrolytes for electrochemical energy storage. Adv Energy Mater 8(97):1702184CrossRef
Zurück zum Zitat Cho S, Kim M, Jang J (2015) Screen-printable and flexible RuO2 nanoparticle-decorated PEDOT:PSS/graphene nanocomposite with enhanced electrical and electrochemical performances for high-capacity supercapacitor. ACS Appl Mater Interfaces 7:10213–10227CrossRef Cho S, Kim M, Jang J (2015) Screen-printable and flexible RuO2 nanoparticle-decorated PEDOT:PSS/graphene nanocomposite with enhanced electrical and electrochemical performances for high-capacity supercapacitor. ACS Appl Mater Interfaces 7:10213–10227CrossRef
Zurück zum Zitat Choi K-H, Yoo J, Lee CK, Lee S-Y (2016) All-inkjet-printed, solid-state flexible supercapacitors on paper. Energy Environ Sci 9:2812–2821CrossRef Choi K-H, Yoo J, Lee CK, Lee S-Y (2016) All-inkjet-printed, solid-state flexible supercapacitors on paper. Energy Environ Sci 9:2812–2821CrossRef
Zurück zum Zitat Choi K-H, Ahn DB, Lee S-Y (2018) Current status and challenges in printed batteries: toward form factor-free, monolithic integrated power sources. ACS Energy Lett 3:220–236CrossRef Choi K-H, Ahn DB, Lee S-Y (2018) Current status and challenges in printed batteries: toward form factor-free, monolithic integrated power sources. ACS Energy Lett 3:220–236CrossRef
Zurück zum Zitat Choudhury NA, Sampathb S, Shukla AK (2009) Hydrogel-polymer electrolytes for electrochemical capacitors: an overview. Energy Environ Sci 2:55–67CrossRef Choudhury NA, Sampathb S, Shukla AK (2009) Hydrogel-polymer electrolytes for electrochemical capacitors: an overview. Energy Environ Sci 2:55–67CrossRef
Zurück zum Zitat Dubal DP, Kim JG, Kim Y, Holze R, Lokhande CD, Kim WB (2014) Supercapacitors based on flexible substrates: an overview. Energ Technol 2:325–341CrossRef Dubal DP, Kim JG, Kim Y, Holze R, Lokhande CD, Kim WB (2014) Supercapacitors based on flexible substrates: an overview. Energ Technol 2:325–341CrossRef
Zurück zum Zitat Dubal DP, Ayyad O, Ruiz V, Gomez-Romero P (2015) Hybrid energy storage: the merging of battery and supercapacitor chemistries. Chem Soc Rev 44:1777CrossRef Dubal DP, Ayyad O, Ruiz V, Gomez-Romero P (2015) Hybrid energy storage: the merging of battery and supercapacitor chemistries. Chem Soc Rev 44:1777CrossRef
Zurück zum Zitat Duduta M, Ho B, Wood VC, Limthongkul P, Brunini VE, Carter WC, Chiang Y-M (2011) Semi-solid lithium rechargeable flow battery. Adv Energy Mater 1:511–516CrossRef Duduta M, Ho B, Wood VC, Limthongkul P, Brunini VE, Carter WC, Chiang Y-M (2011) Semi-solid lithium rechargeable flow battery. Adv Energy Mater 1:511–516CrossRef
Zurück zum Zitat Farahani RD, Dube M, Therriault D (2016) Three-dimensional printing of multifunctional nanocomposites: manufacturing techniques and applications. Adv Mater 28:5794–5821CrossRef Farahani RD, Dube M, Therriault D (2016) Three-dimensional printing of multifunctional nanocomposites: manufacturing techniques and applications. Adv Mater 28:5794–5821CrossRef
Zurück zum Zitat Ferrari S, Loveridge M, Beattie SD, Jahn M, Dashwood RJ, Bhagat R (2015) Latest advances in the manufacturing of 3D rechargeable lithium microbatteries. J Power Sources 286:25–46CrossRef Ferrari S, Loveridge M, Beattie SD, Jahn M, Dashwood RJ, Bhagat R (2015) Latest advances in the manufacturing of 3D rechargeable lithium microbatteries. J Power Sources 286:25–46CrossRef
Zurück zum Zitat Fu Y, Cai X, Wu H, Lv Z, Hou S, Peng M, Yu X, Zou D (2012) Fiber supercapacitors utilizing pen ink for flexible/wearable energy storage. Adv Mater 24(42):5713–5718CrossRef Fu Y, Cai X, Wu H, Lv Z, Hou S, Peng M, Yu X, Zou D (2012) Fiber supercapacitors utilizing pen ink for flexible/wearable energy storage. Adv Mater 24(42):5713–5718CrossRef
Zurück zum Zitat Fu K, Wang Y, Yan C, Yao Y, Chen Y, Dai J, Lacey S, Wang Y, Wan J, Li T et al (2016) Graphene oxide-based electrode inks for 3D-printed lithium-ion batteries. Adv Mater 28:2587–2594CrossRef Fu K, Wang Y, Yan C, Yao Y, Chen Y, Dai J, Lacey S, Wang Y, Wan J, Li T et al (2016) Graphene oxide-based electrode inks for 3D-printed lithium-ion batteries. Adv Mater 28:2587–2594CrossRef
Zurück zum Zitat Fu Y, Wei Q, Zhang G, Sun S (2018) Batteries: advanced phosphorus-based materials for lithium/sodium-ion batteries: recent developments and future perspectives. Adv Energy Mater 8(13):1703058CrossRef Fu Y, Wei Q, Zhang G, Sun S (2018) Batteries: advanced phosphorus-based materials for lithium/sodium-ion batteries: recent developments and future perspectives. Adv Energy Mater 8(13):1703058CrossRef
Zurück zum Zitat Gaikwad AM, Whiting GL, Steingart DA, Arias AC (2011) Highly flexible, printed alkaline batteries based on mesh-embedded electrodes. Adv Mater 23:3251–3255CrossRef Gaikwad AM, Whiting GL, Steingart DA, Arias AC (2011) Highly flexible, printed alkaline batteries based on mesh-embedded electrodes. Adv Mater 23:3251–3255CrossRef
Zurück zum Zitat Gaikwad AM, Khau BV, Davies G, Hertzberg B, Steingart DA, Arias AC (2015a) A high areal capacity flexible lithium-ion battery with a strain-compliant design. Adv Energy Mater 5:1401389CrossRef Gaikwad AM, Khau BV, Davies G, Hertzberg B, Steingart DA, Arias AC (2015a) A high areal capacity flexible lithium-ion battery with a strain-compliant design. Adv Energy Mater 5:1401389CrossRef
Zurück zum Zitat Gaikwad AM, Arias AC, Steingart DA (2015b) Recent progress on printed flexible batteries: mechanical challenges, printing technologies, and future prospects. Energ Technol 3:305–328CrossRef Gaikwad AM, Arias AC, Steingart DA (2015b) Recent progress on printed flexible batteries: mechanical challenges, printing technologies, and future prospects. Energ Technol 3:305–328CrossRef
Zurück zum Zitat Gao H, Lian K (2014) Proton-conducting polymer electrolytes and their applications in solid supercapacitors: a review. RSC Adv 4:33091–33113CrossRef Gao H, Lian K (2014) Proton-conducting polymer electrolytes and their applications in solid supercapacitors: a review. RSC Adv 4:33091–33113CrossRef
Zurück zum Zitat González A, Goikolea E, Barrena JA, Mysyk R (2016) Hierarchical classification of supercapacitors; stroke degradation and their environmental issues in their end-of-life phase. Renew Sustain Energy Rev 58:1189–1206CrossRef González A, Goikolea E, Barrena JA, Mysyk R (2016) Hierarchical classification of supercapacitors; stroke degradation and their environmental issues in their end-of-life phase. Renew Sustain Energy Rev 58:1189–1206CrossRef
Zurück zum Zitat Guo R, Chen J, Yang B, Liu L, Su L, Shen B, Yan X (2017) In-plane micro-supercapacitors for an integrated device on one piece of paper. Adv Funct Mater 27:1702394CrossRef Guo R, Chen J, Yang B, Liu L, Su L, Shen B, Yan X (2017) In-plane micro-supercapacitors for an integrated device on one piece of paper. Adv Funct Mater 27:1702394CrossRef
Zurück zum Zitat Guo Y, Bae J, Zhao F, Yu G (2019) Functional hydrogels for next-generation batteries and supercapacitors. Trends Chem 1:335–348. (Acc Chem Res 50, 2017)CrossRef Guo Y, Bae J, Zhao F, Yu G (2019) Functional hydrogels for next-generation batteries and supercapacitors. Trends Chem 1:335–348. (Acc Chem Res 50, 2017)CrossRef
Zurück zum Zitat Gupta RK, Candler J, Palchoudhury S, Ramasamy K, Gupta BK (2015) Flexible and high performance supercapacitors based on NiCo2O4 for wide temperature range applications. Sci Rep 5:15265CrossRef Gupta RK, Candler J, Palchoudhury S, Ramasamy K, Gupta BK (2015) Flexible and high performance supercapacitors based on NiCo2O4 for wide temperature range applications. Sci Rep 5:15265CrossRef
Zurück zum Zitat Halder A, Ghosh M, Khayum A, Bera MS, Addicoat M, Sasmal HS, Karak S, Kurungot S, Banerjee R (2018) Interlayer hydrogen-bonded covalent organic frameworks as high-performance supercapacitors. J Am Chem Soc 140:10941–10945CrossRef Halder A, Ghosh M, Khayum A, Bera MS, Addicoat M, Sasmal HS, Karak S, Kurungot S, Banerjee R (2018) Interlayer hydrogen-bonded covalent organic frameworks as high-performance supercapacitors. J Am Chem Soc 140:10941–10945CrossRef
Zurück zum Zitat Ho CC, Evans JW, Wright PK (2010) Direct write dispenser printing of a zinc microbattery with an ionic liquid gel electrolyte. J Micromech Microeng 20:104009CrossRef Ho CC, Evans JW, Wright PK (2010) Direct write dispenser printing of a zinc microbattery with an ionic liquid gel electrolyte. J Micromech Microeng 20:104009CrossRef
Zurück zum Zitat Hu L, Wu H, Cui Y (2010) Printed energy storage devices by integration of electrodes and separators into single sheets of paper. Appl Phys Lett 96:183502CrossRef Hu L, Wu H, Cui Y (2010) Printed energy storage devices by integration of electrodes and separators into single sheets of paper. Appl Phys Lett 96:183502CrossRef
Zurück zum Zitat Hu G, Albrow-Owen T, Jin X, Ali A, Hu Y, Howe RC, Shehzad K, Yang Z, Zhu X, Woodward RI (2017) Black phosphorus ink formulation for inkjet printing of optoelectronics and photonics. Nat Commun 8:278CrossRef Hu G, Albrow-Owen T, Jin X, Ali A, Hu Y, Howe RC, Shehzad K, Yang Z, Zhu X, Woodward RI (2017) Black phosphorus ink formulation for inkjet printing of optoelectronics and photonics. Nat Commun 8:278CrossRef
Zurück zum Zitat Huang Y, Liu J, Wang J, Hu M, Mo F, Liang G, Zhi C (2018) An intrinsically self-healing NiCo||Zn rechargeable battery with a self-healable ferric-ion-crosslinking sodium polyacrylate hydrogel electrolyte. Angew Chem Int Ed 57:9810–9813CrossRef Huang Y, Liu J, Wang J, Hu M, Mo F, Liang G, Zhi C (2018) An intrinsically self-healing NiCo||Zn rechargeable battery with a self-healable ferric-ion-crosslinking sodium polyacrylate hydrogel electrolyte. Angew Chem Int Ed 57:9810–9813CrossRef
Zurück zum Zitat Javed MS, Han XY, Hu CG, Zhou MJ, Huang ZW, Tang XF, Gu X (2016) Tracking pseudocapacitive contribution to superior energy storage of MnS nanoparticles grown on carbon textile. ACS Appl Mater Interfaces 8:24621CrossRef Javed MS, Han XY, Hu CG, Zhou MJ, Huang ZW, Tang XF, Gu X (2016) Tracking pseudocapacitive contribution to superior energy storage of MnS nanoparticles grown on carbon textile. ACS Appl Mater Interfaces 8:24621CrossRef
Zurück zum Zitat Jiang Q, Kurra N, Alhabeb M, Gogotsi Y, Alshareef HN (2018a) All pseudocapacitive MXene-RuO2 asymmetric supercapacitors. Adv Energy Mater 8:1703043CrossRef Jiang Q, Kurra N, Alhabeb M, Gogotsi Y, Alshareef HN (2018a) All pseudocapacitive MXene-RuO2 asymmetric supercapacitors. Adv Energy Mater 8:1703043CrossRef
Zurück zum Zitat Jiang Q, Wu C, Wang Z, Wang AC, He J-H, Wang ZL, Alshareef HN (2018b) MXene electrochemical microsupercapacitor integrated with triboelectric nanogenerator as a wearable self-charging power unit. Nano Energy 45:266–272CrossRef Jiang Q, Wu C, Wang Z, Wang AC, He J-H, Wang ZL, Alshareef HN (2018b) MXene electrochemical microsupercapacitor integrated with triboelectric nanogenerator as a wearable self-charging power unit. Nano Energy 45:266–272CrossRef
Zurück zum Zitat Jost K, Stenger D, Perez CR, McDonough JK, Lian K, Gogotsi Y, Dion G (2013) Knitted and screen printed carbon-fiber supercapacitors for applications in wearable electronics. Energy Environ Sci 6:2698–2705CrossRef Jost K, Stenger D, Perez CR, McDonough JK, Lian K, Gogotsi Y, Dion G (2013) Knitted and screen printed carbon-fiber supercapacitors for applications in wearable electronics. Energy Environ Sci 6:2698–2705CrossRef
Zurück zum Zitat Kaempgen M, Chan CK, Ma J, Cui Y, Gruner G (2009) Printable thin film supercapacitors using single-walled carbon nanotubes. Nano Lett 9:1872–1876CrossRef Kaempgen M, Chan CK, Ma J, Cui Y, Gruner G (2009) Printable thin film supercapacitors using single-walled carbon nanotubes. Nano Lett 9:1872–1876CrossRef
Zurück zum Zitat Kiebele A, Gruner G (2007) Carbon nanotube based battery architecture. Appl Phys Lett 91:144104CrossRef Kiebele A, Gruner G (2007) Carbon nanotube based battery architecture. Appl Phys Lett 91:144104CrossRef
Zurück zum Zitat Kil EH, Choi KH, Ha HJ, Xu S, Rogers JA, Kim MR, Lee YG, Kim KM, Cho KY, Lee S, Imprintable Y (2013) Bendable, and shape-conformable polymer electrolytes for versatile-shaped lithium-ion batteries. Adv Mater 25:1395–1400CrossRef Kil EH, Choi KH, Ha HJ, Xu S, Rogers JA, Kim MR, Lee YG, Kim KM, Cho KY, Lee S, Imprintable Y (2013) Bendable, and shape-conformable polymer electrolytes for versatile-shaped lithium-ion batteries. Adv Mater 25:1395–1400CrossRef
Zurück zum Zitat Kim SH, Choi KH, Cho SJ, Choi S, Park S, Lee SY (2015) Printable solid-state lithium-ion batteries: a new route toward shape-conformable power sources with aesthetic versatility for flexible electronics. Nano Lett 15(8):5168–5177CrossRef Kim SH, Choi KH, Cho SJ, Choi S, Park S, Lee SY (2015) Printable solid-state lithium-ion batteries: a new route toward shape-conformable power sources with aesthetic versatility for flexible electronics. Nano Lett 15(8):5168–5177CrossRef
Zurück zum Zitat Kim H, Boulogne F, Um E, Jacobi I, Button E, Stone HA (2016) Controlled uniform coating from the interplay of Marangoni flows and surface-adsorbed macromolecules. Phys Rev Lett 116:124501CrossRef Kim H, Boulogne F, Um E, Jacobi I, Button E, Stone HA (2016) Controlled uniform coating from the interplay of Marangoni flows and surface-adsorbed macromolecules. Phys Rev Lett 116:124501CrossRef
Zurück zum Zitat Kim S-M, Jang B, Jo K, Kim D, Lee J, Kim K-S, Lee S-M, Lee H-J, Han SM, Kim J-H (2017) Mechanics-driven patterning of CVD graphene for roll-based manufacturing process. 2D Mater 4:024003CrossRef Kim S-M, Jang B, Jo K, Kim D, Lee J, Kim K-S, Lee S-M, Lee H-J, Han SM, Kim J-H (2017) Mechanics-driven patterning of CVD graphene for roll-based manufacturing process. 2D Mater 4:024003CrossRef
Zurück zum Zitat Kiruthika S, Sow C, Kulkarni GU (2017) Transparent and flexible supercapacitors with networked electrodes. Small 13(40):1701906CrossRef Kiruthika S, Sow C, Kulkarni GU (2017) Transparent and flexible supercapacitors with networked electrodes. Small 13(40):1701906CrossRef
Zurück zum Zitat Kordas K, Mustonen T, Toth G, Jantunen H, Lajunen M, Soldano C, Talapatra S, Kar S, Vajtai R, Ajayan P, Inkjet M (2006) Printing of electrically conductive patterns of carbon nanotubes. Small 2:1021–1025CrossRef Kordas K, Mustonen T, Toth G, Jantunen H, Lajunen M, Soldano C, Talapatra S, Kar S, Vajtai R, Ajayan P, Inkjet M (2006) Printing of electrically conductive patterns of carbon nanotubes. Small 2:1021–1025CrossRef
Zurück zum Zitat Kuang M, Wang L, Song Y (2014) Controllable printing droplets for high-resolution patterns. Adv Mater 26:6950–6958CrossRef Kuang M, Wang L, Song Y (2014) Controllable printing droplets for high-resolution patterns. Adv Mater 26:6950–6958CrossRef
Zurück zum Zitat Kumar R, Shin J, Yin L, You JM, Meng YS, Wang J (2017) All-printed, stretchable Zn-Ag2O rechargeable battery via hyperelastic binder for self-powering wearable electronics. Adv Energy Mater 7:1602096CrossRef Kumar R, Shin J, Yin L, You JM, Meng YS, Wang J (2017) All-printed, stretchable Zn-Ag2O rechargeable battery via hyperelastic binder for self-powering wearable electronics. Adv Energy Mater 7:1602096CrossRef
Zurück zum Zitat Lamberti A, Clerici F, Fontana M, Scaltrito L (2016) A highly stretchable supercapacitor using laser-induced graphene electrodes onto elastomeric substrate. Adv Energy Mater 6:1600050CrossRef Lamberti A, Clerici F, Fontana M, Scaltrito L (2016) A highly stretchable supercapacitor using laser-induced graphene electrodes onto elastomeric substrate. Adv Energy Mater 6:1600050CrossRef
Zurück zum Zitat Lawes S, Riese A, Sun Q, Cheng NC, Sun XL (2015) Printing nanostructured carbon for energy storage and conversion applications. Carbon 92:150–176CrossRef Lawes S, Riese A, Sun Q, Cheng NC, Sun XL (2015) Printing nanostructured carbon for energy storage and conversion applications. Carbon 92:150–176CrossRef
Zurück zum Zitat Lechene BP, Cowell M, Pierre A, Evans JW, Wright PK, Arias AC (2016) Organic solar cells and fully printed super-capacitors optimized for indoor light energy harvesting. Nano Energy 26:631–640CrossRef Lechene BP, Cowell M, Pierre A, Evans JW, Wright PK, Arias AC (2016) Organic solar cells and fully printed super-capacitors optimized for indoor light energy harvesting. Nano Energy 26:631–640CrossRef
Zurück zum Zitat Lee H, Hong S, Kwon J, Suh YD, Lee J, Moon H, Yeo J, Ko SH (2015) All-solid-state flexible supercapacitors by fast laser annealing of printed metal nanoparticle layers. J Mater Chem A 3:8339–8345CrossRef Lee H, Hong S, Kwon J, Suh YD, Lee J, Moon H, Yeo J, Ko SH (2015) All-solid-state flexible supercapacitors by fast laser annealing of printed metal nanoparticle layers. J Mater Chem A 3:8339–8345CrossRef
Zurück zum Zitat Lewis JA, Gratson GM (2004) Direct writing in three dimensions. Mater Today 7(7–8):32–39CrossRef Lewis JA, Gratson GM (2004) Direct writing in three dimensions. Mater Today 7(7–8):32–39CrossRef
Zurück zum Zitat Li Y, Dai H (2014) Recent advances in zinc-air batteries. Chem Soc Rev 43:5257–5275CrossRef Li Y, Dai H (2014) Recent advances in zinc-air batteries. Chem Soc Rev 43:5257–5275CrossRef
Zurück zum Zitat Li J, Ye F, Vaziri S, Muhammed M, Lemme MC, Ostling M (2013) Efficient inkjet printing of graphene. Adv Mater 25:3985–3992CrossRef Li J, Ye F, Vaziri S, Muhammed M, Lemme MC, Ostling M (2013) Efficient inkjet printing of graphene. Adv Mater 25:3985–3992CrossRef
Zurück zum Zitat Li F, Chen J, Wang X, Xue M, Chen GF (2015) Stretchable supercapacitor with adjustable volumetric capacitance based on 3D interdigital electrodes. Adv Funct Mater 25:4601–4606CrossRef Li F, Chen J, Wang X, Xue M, Chen GF (2015) Stretchable supercapacitor with adjustable volumetric capacitance based on 3D interdigital electrodes. Adv Funct Mater 25:4601–4606CrossRef
Zurück zum Zitat Li L, Secor EB, Chen K-S, Zhu J, Liu X, Gao TZ, Seo J-WT, Zhao Y, Hersam MC (2016) High-performance solid-state supercapacitors and microsupercapacitors derived from printable graphene inks. Adv Energy Mater 6:1600909CrossRef Li L, Secor EB, Chen K-S, Zhu J, Liu X, Gao TZ, Seo J-WT, Zhao Y, Hersam MC (2016) High-performance solid-state supercapacitors and microsupercapacitors derived from printable graphene inks. Adv Energy Mater 6:1600909CrossRef
Zurück zum Zitat Li W, Song B, Manthiram A (2017a) High-voltage positive electrode materials for lithium-ion batteries. Chem Soc Rev 46:3006–3059CrossRef Li W, Song B, Manthiram A (2017a) High-voltage positive electrode materials for lithium-ion batteries. Chem Soc Rev 46:3006–3059CrossRef
Zurück zum Zitat Li X-C, Zhang Y, Wang C-Y, Wan Y, Lai W-Y, Pang H, Huang W (2017b) Redox-active triazatruxene-based conjugated microporous polymers for high-performance supercapacitors. Chem Sci 8:2959–2965CrossRef Li X-C, Zhang Y, Wang C-Y, Wan Y, Lai W-Y, Pang H, Huang W (2017b) Redox-active triazatruxene-based conjugated microporous polymers for high-performance supercapacitors. Chem Sci 8:2959–2965CrossRef
Zurück zum Zitat Li J, Delekta SS, Zhang P, Yang S, Lohe MR, Zhuang X, Feng X, Ostling M (2017c) Scalable fabrication and integration of graphene microsupercapacitors through full inkjet printing. ACS Nano 11:8249–8256CrossRef Li J, Delekta SS, Zhang P, Yang S, Lohe MR, Zhuang X, Feng X, Ostling M (2017c) Scalable fabrication and integration of graphene microsupercapacitors through full inkjet printing. ACS Nano 11:8249–8256CrossRef
Zurück zum Zitat Lin Y, Gao Y, Fan Z (2017) Printable fabrication of nanocoral-structured electrodes for high-performance flexible and planar supercapacitor with artistic design. Adv Mater 29:1701736CrossRef Lin Y, Gao Y, Fan Z (2017) Printable fabrication of nanocoral-structured electrodes for high-performance flexible and planar supercapacitor with artistic design. Adv Mater 29:1701736CrossRef
Zurück zum Zitat Liu Z, Wu Z-S, Yang S, Dong R, Feng X, Muellen K (2016) Ultraflexible in-plane micro-supercapacitors by direct printing of solution-processable electrochemically exfoliated graphene. Adv Mater 28:2217–2222CrossRef Liu Z, Wu Z-S, Yang S, Dong R, Feng X, Muellen K (2016) Ultraflexible in-plane micro-supercapacitors by direct printing of solution-processable electrochemically exfoliated graphene. Adv Mater 28:2217–2222CrossRef
Zurück zum Zitat Liu C, Yan X, Hu F, Gao G, Wu G, Yang X (2018) Toward superior capacitive energy storage: recent advances in pore engineering for dense electrodes. Adv Mater 30:1705713CrossRef Liu C, Yan X, Hu F, Gao G, Wu G, Yang X (2018) Toward superior capacitive energy storage: recent advances in pore engineering for dense electrodes. Adv Mater 30:1705713CrossRef
Zurück zum Zitat Luo J-Y, Cui W-J, He P, Xia Y-Y (2010) Raising the cycling stability of aqueous lithium-ion batteries by eliminating oxygen in the electrolyte. Nat Chem 2(9):760–765CrossRef Luo J-Y, Cui W-J, He P, Xia Y-Y (2010) Raising the cycling stability of aqueous lithium-ion batteries by eliminating oxygen in the electrolyte. Nat Chem 2(9):760–765CrossRef
Zurück zum Zitat Lv Z, Luo Y, Tang Y, Wei J, Zhu Z, Zhou X, Li W, Zeng Y, Zhang W, Zhang Y (2018) Editable supercapacitors with customizable stretchability based on mechanically strengthened ultralong MnO2 nanowire composite. Adv Mater 30:1704531CrossRef Lv Z, Luo Y, Tang Y, Wei J, Zhu Z, Zhou X, Li W, Zeng Y, Zhang W, Zhang Y (2018) Editable supercapacitors with customizable stretchability based on mechanically strengthened ultralong MnO2 nanowire composite. Adv Mater 30:1704531CrossRef
Zurück zum Zitat Maeng J, Kim Y-J, Meng C, Irazoqui PP (2016) Three-dimensional microcavity array electrodes for high-capacitance all-solid-state flexible microsupercapacitors. ACS Appl Mater Interfaces 8(21):13458–13465CrossRef Maeng J, Kim Y-J, Meng C, Irazoqui PP (2016) Three-dimensional microcavity array electrodes for high-capacitance all-solid-state flexible microsupercapacitors. ACS Appl Mater Interfaces 8(21):13458–13465CrossRef
Zurück zum Zitat Niu Z, Zhou W, Chen J, Feng G, Li H, Hu Y, Ma W, Dong H, Li J, Xie S (2013) Flexible supercapacitors—development of bendable carbon architectures. Small 9:518–524CrossRef Niu Z, Zhou W, Chen J, Feng G, Li H, Hu Y, Ma W, Dong H, Li J, Xie S (2013) Flexible supercapacitors—development of bendable carbon architectures. Small 9:518–524CrossRef
Zurück zum Zitat Olakanmi E, Cochrane R, Dalgarno K (2015) A review on selective laser sintering/melting (SLS/SLM) of aluminium alloy powders: processing, microstructure, and properties. Prog Mater Sci 74:40–477CrossRef Olakanmi E, Cochrane R, Dalgarno K (2015) A review on selective laser sintering/melting (SLS/SLM) of aluminium alloy powders: processing, microstructure, and properties. Prog Mater Sci 74:40–477CrossRef
Zurück zum Zitat Pech D, Brunet M, Taberna PL, Simon P, Fabre N, Mesnilgrente F, Conedera V, Durou H (2010) Elaboration of a microstructured inkjet-printed carbon electrochemical capacitor. J Power Sources 195:1266–1269CrossRef Pech D, Brunet M, Taberna PL, Simon P, Fabre N, Mesnilgrente F, Conedera V, Durou H (2010) Elaboration of a microstructured inkjet-printed carbon electrochemical capacitor. J Power Sources 195:1266–1269CrossRef
Zurück zum Zitat Reyes C, Somogyi R, Niu S, Cruz MA, Yang F, Catenacci MJ, Rhodes CP, Wiley BJ (2018) Three-dimensional printing of a complete lithium ion battery with fused filament fabrication. ACS Appl Energy Mater 1:5268–5279 Reyes C, Somogyi R, Niu S, Cruz MA, Yang F, Catenacci MJ, Rhodes CP, Wiley BJ (2018) Three-dimensional printing of a complete lithium ion battery with fused filament fabrication. ACS Appl Energy Mater 1:5268–5279
Zurück zum Zitat Sambandan S, Lujan R, Arias AC, Newman CR, Facchetti A (2009) Electrical stability of inkjet-patterned organic complementary inverters measured in ambient conditions. Appl Phys Lett 94:233307CrossRef Sambandan S, Lujan R, Arias AC, Newman CR, Facchetti A (2009) Electrical stability of inkjet-patterned organic complementary inverters measured in ambient conditions. Appl Phys Lett 94:233307CrossRef
Zurück zum Zitat Shen K, Ding J, Yang S (2018) 3D printing quasi-solid-state asymmetric micro-supercapacitors with ultrahigh areal energy density. Adv Energy Mater 8:1701527CrossRef Shen K, Ding J, Yang S (2018) 3D printing quasi-solid-state asymmetric micro-supercapacitors with ultrahigh areal energy density. Adv Energy Mater 8:1701527CrossRef
Zurück zum Zitat Simon P, Gogotsi Y (2008) Materials for electrochemical capacitors. Nat Mater 7:845–854CrossRef Simon P, Gogotsi Y (2008) Materials for electrochemical capacitors. Nat Mater 7:845–854CrossRef
Zurück zum Zitat Singh N, Galande C, Miranda A, Mathkar A, Gao W, Reddy AL, Vlad A, Ajayan PM (2012) Paintable battery. Sci Rep 2:481CrossRef Singh N, Galande C, Miranda A, Mathkar A, Gao W, Reddy AL, Vlad A, Ajayan PM (2012) Paintable battery. Sci Rep 2:481CrossRef
Zurück zum Zitat Snook GA, Kao P, Best AS (2011) Conducting-polymer-based supercapacitor devices and electrodes. J Power Sources 196:1–12CrossRef Snook GA, Kao P, Best AS (2011) Conducting-polymer-based supercapacitor devices and electrodes. J Power Sources 196:1–12CrossRef
Zurück zum Zitat Song Z, Ma T, Tang R, Cheng Q, Wang X, Krishnaraju D, Panat R, Chan CK, Yu H, Jiang H (2014) Origami lithium-ion batteries. Nat Commun 5:3140CrossRef Song Z, Ma T, Tang R, Cheng Q, Wang X, Krishnaraju D, Panat R, Chan CK, Yu H, Jiang H (2014) Origami lithium-ion batteries. Nat Commun 5:3140CrossRef
Zurück zum Zitat Sumboja A, Liu J, Guangyuan Zheng W, Zong Y, Zhang H, Liu Z (2018) Electrochemical energy storage devices for wearable technology: a rationale for materials selection and cell design. Chem Soc Rev 47:5919–5945CrossRef Sumboja A, Liu J, Guangyuan Zheng W, Zong Y, Zhang H, Liu Z (2018) Electrochemical energy storage devices for wearable technology: a rationale for materials selection and cell design. Chem Soc Rev 47:5919–5945CrossRef
Zurück zum Zitat Sun K, Wei TS, Ahn BY, Seo JY, Dillon SJ, Lewis JA (2013) 3D printing of interdigitated Li-ion microbattery architectures. Adv Mater 25(33):4539–4543CrossRef Sun K, Wei TS, Ahn BY, Seo JY, Dillon SJ, Lewis JA (2013) 3D printing of interdigitated Li-ion microbattery architectures. Adv Mater 25(33):4539–4543CrossRef
Zurück zum Zitat Tamilarasan P, Ramaprabhu S (2013) Graphene based all-solid-state supercapacitors with ionic liquid incorporated polyacrylonitrile electrolyte. Energy 51:374–381CrossRef Tamilarasan P, Ramaprabhu S (2013) Graphene based all-solid-state supercapacitors with ionic liquid incorporated polyacrylonitrile electrolyte. Energy 51:374–381CrossRef
Zurück zum Zitat Tian X, Jin J, Yuan S, Chua CK, Tor SB, Zhou K (2017) Emerging 3D-printed electrochemical energy storage devices: a critical review. Adv Energy Mater 7(17):1700127CrossRef Tian X, Jin J, Yuan S, Chua CK, Tor SB, Zhou K (2017) Emerging 3D-printed electrochemical energy storage devices: a critical review. Adv Energy Mater 7(17):1700127CrossRef
Zurück zum Zitat Um HD, Choi KH, Hwang I, Kim SH, Seo K, Lee SY (2017) Monolithically integrated, photo-rechargeable portable power sources based on miniaturized Si solar cells and printed solid-state lithium-ion batteries. Energy Environ Sci 10:931–940CrossRef Um HD, Choi KH, Hwang I, Kim SH, Seo K, Lee SY (2017) Monolithically integrated, photo-rechargeable portable power sources based on miniaturized Si solar cells and printed solid-state lithium-ion batteries. Energy Environ Sci 10:931–940CrossRef
Zurück zum Zitat Wang ZQ, Winslow R, Madan D, Wright PK, Evans JW, Keif M, Rong XY (2014) Development of MnO2 cathode inks for flexographically printed rechargeable zinc-based battery. J Power Sources 268:246–254CrossRef Wang ZQ, Winslow R, Madan D, Wright PK, Evans JW, Keif M, Rong XY (2014) Development of MnO2 cathode inks for flexographically printed rechargeable zinc-based battery. J Power Sources 268:246–254CrossRef
Zurück zum Zitat Wang F, Wu X, Yuan X, Liu Z, Zhang Y, Fu L, Zhu Y, Zhou Q, Wu Y, Huang W (2017a) Latest advances in supercapacitors: from new electrode materials to novel device designs. Chem Soc Rev 46:6816–6854CrossRef Wang F, Wu X, Yuan X, Liu Z, Zhang Y, Fu L, Zhu Y, Zhou Q, Wu Y, Huang W (2017a) Latest advances in supercapacitors: from new electrode materials to novel device designs. Chem Soc Rev 46:6816–6854CrossRef
Zurück zum Zitat Wang X, Lu Q, Chen C, Han M, Wang Q, Li H, Niu Z, Chen J (2017b) A consecutive spray printing strategy to construct and integrate diverse supercapacitors on various substrates. ACS Appl Mater Interfaces 9:28612–28619CrossRef Wang X, Lu Q, Chen C, Han M, Wang Q, Li H, Niu Z, Chen J (2017b) A consecutive spray printing strategy to construct and integrate diverse supercapacitors on various substrates. ACS Appl Mater Interfaces 9:28612–28619CrossRef
Zurück zum Zitat Wang Y, Zhang Y-Z, Dubbink D, ten Elshof JE (2018) Inkjet printing of δ-MnO2 nanosheets for flexible solid-state micro-supercapacitor. Nano Energy 49:481–488CrossRef Wang Y, Zhang Y-Z, Dubbink D, ten Elshof JE (2018) Inkjet printing of δ-MnO2 nanosheets for flexible solid-state micro-supercapacitor. Nano Energy 49:481–488CrossRef
Zurück zum Zitat Whittingham MS (2012) History, evolution, and future status of energy storage. Proc IEEE 100:1518–1534CrossRef Whittingham MS (2012) History, evolution, and future status of energy storage. Proc IEEE 100:1518–1534CrossRef
Zurück zum Zitat Windsheimer H, Travitzky N, Hofenauer A, Greil P (2007) Laminated object manufacturing of preceramic-paper-derived Si-SiC composites. Adv Mater 19(24):4515–4519CrossRef Windsheimer H, Travitzky N, Hofenauer A, Greil P (2007) Laminated object manufacturing of preceramic-paper-derived Si-SiC composites. Adv Mater 19(24):4515–4519CrossRef
Zurück zum Zitat Wu Z-S, Liu Z, Parvez K, Feng X, Muellen K (2015) Ultrathin printable graphene supercapacitors with AC line-filtering performance. Adv Mater 27:3669–3675CrossRef Wu Z-S, Liu Z, Parvez K, Feng X, Muellen K (2015) Ultrathin printable graphene supercapacitors with AC line-filtering performance. Adv Mater 27:3669–3675CrossRef
Zurück zum Zitat Wu H, Liu W, He R, Wu Z, Jiang Q, Song X, Chen Y, Cheng L, Wu S (2017) Fabrication of dense zirconia-toughened alumina ceramics through a stereolithography-based additive manufacturing. Ceram Int 43:968–972CrossRef Wu H, Liu W, He R, Wu Z, Jiang Q, Song X, Chen Y, Cheng L, Wu S (2017) Fabrication of dense zirconia-toughened alumina ceramics through a stereolithography-based additive manufacturing. Ceram Int 43:968–972CrossRef
Zurück zum Zitat Xu J-L, Liu Y-H, Gao X, Sun Y, Shen S, Cai X, Chen L, Wang S-D (2017) Embedded Ag grid electrodes as current collector for ultraflexible transparent solid-state supercapacitor. ACS Appl Mater Interfaces 9:27649–27656CrossRef Xu J-L, Liu Y-H, Gao X, Sun Y, Shen S, Cai X, Chen L, Wang S-D (2017) Embedded Ag grid electrodes as current collector for ultraflexible transparent solid-state supercapacitor. ACS Appl Mater Interfaces 9:27649–27656CrossRef
Zurück zum Zitat Xue Q, Sun J, Huang Y, Zhu M, Pei Z, Li H, Wang Y, Li N, Zhang H, Zhi C (2017) Recent progress on flexible and wearable supercapacitors. Small 13:1701827CrossRef Xue Q, Sun J, Huang Y, Zhu M, Pei Z, Li H, Wang Y, Li N, Zhang H, Zhi C (2017) Recent progress on flexible and wearable supercapacitors. Small 13:1701827CrossRef
Zurück zum Zitat Yang X, Cheng C, Wang Y, Qiu L, Li D (2013) Liquid-mediated dense integration of graphene materials for compact capacitive energy storage. Science 341(6145):534–537CrossRef Yang X, Cheng C, Wang Y, Qiu L, Li D (2013) Liquid-mediated dense integration of graphene materials for compact capacitive energy storage. Science 341(6145):534–537CrossRef
Zurück zum Zitat Yang P, Sun P, Chai Z, Huang L, Cai X, Tan S, Song J, Mai W (2014) Large-scale fabrication of pseudocapacitive glass windows that combine electrochromism and energy storage. Angew Chem Int Ed 53:11935–11939CrossRef Yang P, Sun P, Chai Z, Huang L, Cai X, Tan S, Song J, Mai W (2014) Large-scale fabrication of pseudocapacitive glass windows that combine electrochromism and energy storage. Angew Chem Int Ed 53:11935–11939CrossRef
Zurück zum Zitat Ye J, Tan H, Wu S, Ni K, Pan F, Liu J, Tao Z, Qu Y, Ji H, Simon P (2018) Direct laser writing of graphene made from chemical vapor deposition for flexible, integratable micro-supercapacitors with ultrahigh power output. Adv Mater 30:1801384CrossRef Ye J, Tan H, Wu S, Ni K, Pan F, Liu J, Tao Z, Qu Y, Ji H, Simon P (2018) Direct laser writing of graphene made from chemical vapor deposition for flexible, integratable micro-supercapacitors with ultrahigh power output. Adv Mater 30:1801384CrossRef
Zurück zum Zitat Yoo JJ, Balakrishnan K, Huang J, Meunier V, Sumpter BG, Srivastava A, Conway M, Reddy LLM, Yu J, Vajtai R, Ajayan PM (2011) Ultrathin planar graphene supercapacitors. Nano Lett 11(4):1423–1427CrossRef Yoo JJ, Balakrishnan K, Huang J, Meunier V, Sumpter BG, Srivastava A, Conway M, Reddy LLM, Yu J, Vajtai R, Ajayan PM (2011) Ultrathin planar graphene supercapacitors. Nano Lett 11(4):1423–1427CrossRef
Zurück zum Zitat Yun J, Lim Y, Lee H, Lee G, Park H, Hong SY, Jin SW, Lee YH, Lee S-S, Ha JS (2017) A patterned graphene/ZnO UV sensor driven by integrated asymmetric micro-supercapacitors on a liquid metal patterned foldable paper. Adv Funct Mater 27:1700135CrossRef Yun J, Lim Y, Lee H, Lee G, Park H, Hong SY, Jin SW, Lee YH, Lee S-S, Ha JS (2017) A patterned graphene/ZnO UV sensor driven by integrated asymmetric micro-supercapacitors on a liquid metal patterned foldable paper. Adv Funct Mater 27:1700135CrossRef
Zurück zum Zitat Zeng Y, Han Y, Zhao Y, Zeng Y, Yu M, Liu Y, Tang H, Tong Y, Lu X (2015) Advanced Ti-doped Fe2O3@PEDOT core/shell anode for high-energy asymmetric supercapacitors. Adv Energy Mater 5:1402176CrossRef Zeng Y, Han Y, Zhao Y, Zeng Y, Yu M, Liu Y, Tang H, Tong Y, Lu X (2015) Advanced Ti-doped Fe2O3@PEDOT core/shell anode for high-energy asymmetric supercapacitors. Adv Energy Mater 5:1402176CrossRef
Zurück zum Zitat Zhang B, Liao H, Coddet C (2012) Effects of processing parameters on properties of selective laser melting Mg–9%Al powder mixture. Mater Design 34:753CrossRef Zhang B, Liao H, Coddet C (2012) Effects of processing parameters on properties of selective laser melting Mg–9%Al powder mixture. Mater Design 34:753CrossRef
Zurück zum Zitat Zhang CF, Higgins TM, Park SH, O’Brien SE, Long DH, Coleman J, Nicolosi V (2016) Highly flexible and transparent solid-state supercapacitors based on RuO2/PEDOT: PSS conductive ultrathin films. Nano Energy 28:495CrossRef Zhang CF, Higgins TM, Park SH, O’Brien SE, Long DH, Coleman J, Nicolosi V (2016) Highly flexible and transparent solid-state supercapacitors based on RuO2/PEDOT: PSS conductive ultrathin films. Nano Energy 28:495CrossRef
Zurück zum Zitat Zhang C, Kremer MP, Seral-Ascaso A, Park S-H, McEvoy N, Anasori B, Gogotsi Y, Nicolosi V (2018) Stamping of flexible, coplanar micro-supercapacitors using MXene inks. Adv Funct Mater 28:1705506CrossRef Zhang C, Kremer MP, Seral-Ascaso A, Park S-H, McEvoy N, Anasori B, Gogotsi Y, Nicolosi V (2018) Stamping of flexible, coplanar micro-supercapacitors using MXene inks. Adv Funct Mater 28:1705506CrossRef
Zurück zum Zitat Zhang Y-Z, Wang Y, Cheng T, Yao L-Q, Li X, Lai W-Y, Huang W (2019) Printed supercapacitors: materials, printing and applications. Chem Soc Rev 48:3229–3264CrossRef Zhang Y-Z, Wang Y, Cheng T, Yao L-Q, Li X, Lai W-Y, Huang W (2019) Printed supercapacitors: materials, printing and applications. Chem Soc Rev 48:3229–3264CrossRef
Zurück zum Zitat Zheng X, Smith W, Jackson J, Moran B, Cui H, Chen D, Ye J, Fang N, Rodriguez N, Weisgraber T, Spadaccini CM (2016) Multiscale metallic metamaterials. Nat Mater 15(10):1100CrossRef Zheng X, Smith W, Jackson J, Moran B, Cui H, Chen D, Ye J, Fang N, Rodriguez N, Weisgraber T, Spadaccini CM (2016) Multiscale metallic metamaterials. Nat Mater 15(10):1100CrossRef
Zurück zum Zitat Zheng S, Tang X, Wu Z-S, Tan Y-Z, Wang S, Sun C, Cheng H-M, Bao X (2017) Arbitrary-shaped graphene-based planar sandwich supercapacitors on one substrate with enhanced flexibility and integration. ACS Nano 11:2171–2179CrossRef Zheng S, Tang X, Wu Z-S, Tan Y-Z, Wang S, Sun C, Cheng H-M, Bao X (2017) Arbitrary-shaped graphene-based planar sandwich supercapacitors on one substrate with enhanced flexibility and integration. ACS Nano 11:2171–2179CrossRef
Zurück zum Zitat Zhu C, Han TY-J, Duoss EB, Golobic AM, Kuntz JD, Spadaccini CM, Worsley MA (2015) Highly compressible 3D periodic graphene aerogel microlattices. Nat Commun 6:6962CrossRef Zhu C, Han TY-J, Duoss EB, Golobic AM, Kuntz JD, Spadaccini CM, Worsley MA (2015) Highly compressible 3D periodic graphene aerogel microlattices. Nat Commun 6:6962CrossRef
Zurück zum Zitat Zhu C, Liu T, Qian F, Han TY-J, Duoss EB, Kuntz JD, Spadaccini CM, Worsley MA, Li Y (2016) Supercapacitors based on three-dimensional hierarchical graphene aerogels with periodic macropores. Nano Lett 16(6):3448–3456CrossRef Zhu C, Liu T, Qian F, Han TY-J, Duoss EB, Kuntz JD, Spadaccini CM, Worsley MA, Li Y (2016) Supercapacitors based on three-dimensional hierarchical graphene aerogels with periodic macropores. Nano Lett 16(6):3448–3456CrossRef
Zurück zum Zitat Zhu YH, Yuan S, Bao D, Yin YB, Zhong HX, Zhang XB, Yan JM, Jiang Q (2017) Decorating waste cloth via industrial wastewater for tube-type flexible and wearable sodium-ion batteries. Adv Mater 29(16):1603719CrossRef Zhu YH, Yuan S, Bao D, Yin YB, Zhong HX, Zhang XB, Yan JM, Jiang Q (2017) Decorating waste cloth via industrial wastewater for tube-type flexible and wearable sodium-ion batteries. Adv Mater 29(16):1603719CrossRef
Metadaten
Titel
Printed Flexible Electrochemical Energy Storage Devices
verfasst von
Colin Tong
Copyright-Jahr
2022
DOI
https://doi.org/10.1007/978-3-030-79804-8_9