Skip to main content
Erschienen in:
Buchtitelbild

2013 | OriginalPaper | Buchkapitel

Printing Peptide Arrays with a Complementary Metal Oxide Semiconductor Chip

verfasst von : Felix F. Loeffler, Yun-Chien Cheng, Bastian Muenster, Jakob Striffler, Fanny C. Liu, F. Ralf Bischoff, Edgar Doersam, Frank Breitling, Alexander Nesterov-Mueller

Erschienen in: Fundamentals and Application of New Bioproduction Systems

Verlag: Springer Berlin Heidelberg

Aktivieren Sie unsere intelligente Suche um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

In this chapter, we discuss the state-of-the-art peptide array technologies, comparing the spot technique, lithographical methods, and microelectronic chip-based approaches. Based on this analysis, we describe a novel peptide array synthesis method with a microelectronic chip printer. By means of a complementary metal oxide semiconductor chip, charged bioparticles can be patterned on its surface. The bioparticles serve as vehicles to transfer molecule monomers to specific synthesis spots. Our chip offers 16,384 pixel electrodes on its surface with a spot-to-spot pitch of 100 μm. By switching the voltage of each pixel between 0 and 100 V separately, it is possible to generate arbitrary particle patterns for combinatorial molecule synthesis. Afterwards, the patterned chip surface serves as a printing head to transfer the particle pattern from its surface to a synthesis substrate. We conducted a series of proof-of-principle experiments to synthesize high-density peptide arrays. Our solid phase synthesis approach is based on the 9-fluorenylmethoxycarbonyl protection group strategy. After melting the particles, embedded monomers diffuse to the surface and participate in the coupling reaction to the surface. The method demonstrated herein can be easily extended to the synthesis of more complicated artificial molecules by using bioparticles with artificial molecular building blocks. The possibility of synthesizing artificial peptides was also shown in an experiment in which we patterned biotin particles in a high-density array format. These results open the road to the development of peptide-based functional modules for diverse applications in biotechnology.

Graphical Abstract

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Fußnoten
1
Parts of this book chapter have already been published [13] and were reprinted with permission.
 
2
Stasiak, J.W., Hewlett-Packard, Printable Nano Electronics, COMS 2010, Aug 29th–Sept 2nd, Albuquerque, USA.
 
Literatur
1.
Zurück zum Zitat Löffler F (2012) Development of particle-based high-density peptide arrays for application in antibody assays. Ph.D., thesis, University of Heidelberg Löffler F (2012) Development of particle-based high-density peptide arrays for application in antibody assays. Ph.D., thesis, University of Heidelberg
2.
Zurück zum Zitat Loeffler F, Schirwitz C, Wagner J, Koenig K, Maerkle F, Torralba G, Hausmann M, Bischoff FR, Nesterov-Mueller A, Breitling F (2012) Biomolecule arrays using functional combinatorial particle patterning on microchips. Adv Funct Mater 22(12):2503–2508. doi:10.1002/adfm.201103103 CrossRef Loeffler F, Schirwitz C, Wagner J, Koenig K, Maerkle F, Torralba G, Hausmann M, Bischoff FR, Nesterov-Mueller A, Breitling F (2012) Biomolecule arrays using functional combinatorial particle patterning on microchips. Adv Funct Mater 22(12):2503–2508. doi:10.​1002/​adfm.​201103103 CrossRef
3.
Zurück zum Zitat Cheng Y-C (2012) CMOS-chip based printing system for combinatorial synthesis. Ph.D., thesis, Technical University of Darmstadt Cheng Y-C (2012) CMOS-chip based printing system for combinatorial synthesis. Ph.D., thesis, Technical University of Darmstadt
6.
Zurück zum Zitat Tian JD, Quan JY, Saaem I, Tang N, Ma SM, Negre N, Gong H, White KP (2011) Parallel on-chip gene synthesis and application to optimization of protein expression. Nat Biotechnol 29(5):449–452. doi:10.1038/nbt.1847 CrossRef Tian JD, Quan JY, Saaem I, Tang N, Ma SM, Negre N, Gong H, White KP (2011) Parallel on-chip gene synthesis and application to optimization of protein expression. Nat Biotechnol 29(5):449–452. doi:10.​1038/​nbt.​1847 CrossRef
7.
Zurück zum Zitat Kosuri S, Eroshenko N, LeProust EM, Super M, Way J, Li JB, Church GM (2010) Scalable gene synthesis by selective amplification of DNA pools from high-fidelity microchips. Nat Biotechnol 28(12):1295–1299. doi:10.1038/nbt.1716 CrossRef Kosuri S, Eroshenko N, LeProust EM, Super M, Way J, Li JB, Church GM (2010) Scalable gene synthesis by selective amplification of DNA pools from high-fidelity microchips. Nat Biotechnol 28(12):1295–1299. doi:10.​1038/​nbt.​1716 CrossRef
8.
Zurück zum Zitat Katz C, Levy-Beladev L, Rotem-Bamberger S, Rito T, Rudiger SGD, Friedler A (2011) Studying protein–protein interactions using peptide arrays. Chem Soc Rev 40(5):2131–2145. doi:10.1039/C0cs00029a CrossRef Katz C, Levy-Beladev L, Rotem-Bamberger S, Rito T, Rudiger SGD, Friedler A (2011) Studying protein–protein interactions using peptide arrays. Chem Soc Rev 40(5):2131–2145. doi:10.​1039/​C0cs00029a CrossRef
9.
Zurück zum Zitat Seeberger PH, Haase WC (2000) Solid-phase oligosaccharide synthesis and combinatorial carbohydrate libraries. Chem Rev 100(12):4349–4393. doi:10.1021/Cr9903104 Seeberger PH, Haase WC (2000) Solid-phase oligosaccharide synthesis and combinatorial carbohydrate libraries. Chem Rev 100(12):4349–4393. doi:10.​1021/​Cr9903104
10.
Zurück zum Zitat Merrifield RB (1965) Automated synthesis of peptides. Science 150(3693):178–185CrossRef Merrifield RB (1965) Automated synthesis of peptides. Science 150(3693):178–185CrossRef
12.
Zurück zum Zitat Mccafferty J, Griffiths AD, Winter G, Chiswell DJ (1990) Phage antibodies—filamentous phage displaying antibody variable domains. Nature 348(6301):552–554. doi:10.1038/348552a0 CrossRef Mccafferty J, Griffiths AD, Winter G, Chiswell DJ (1990) Phage antibodies—filamentous phage displaying antibody variable domains. Nature 348(6301):552–554. doi:10.​1038/​348552a0 CrossRef
13.
Zurück zum Zitat Dübel S, Breitling F (1999) Recombinant antibodies, English edn. Wiley, New York Dübel S, Breitling F (1999) Recombinant antibodies, English edn. Wiley, New York
14.
Zurück zum Zitat Fodor SPA, Read JL, Pirrung MC, Stryer L, Lu AT, Solas D (1991) Light-directed spatially addressable parallel chemical synthesis. Science 251(4995):767–773CrossRef Fodor SPA, Read JL, Pirrung MC, Stryer L, Lu AT, Solas D (1991) Light-directed spatially addressable parallel chemical synthesis. Science 251(4995):767–773CrossRef
15.
Zurück zum Zitat Pellois JP, Zhou XC, Srivannavit O, Zhou TC, Gulari E, Gao XL (2002) Individually addressable parallel peptide synthesis on microchips. Nat Biotechnol 20(9):922–926. doi:10.1038/Nbt723 CrossRef Pellois JP, Zhou XC, Srivannavit O, Zhou TC, Gulari E, Gao XL (2002) Individually addressable parallel peptide synthesis on microchips. Nat Biotechnol 20(9):922–926. doi:10.​1038/​Nbt723 CrossRef
16.
Zurück zum Zitat Lipshutz RJ, Fodor SPA, Gingeras TR, Lockhart DJ (1999) High density synthetic oligonucleotide arrays. Nat Genet 21:20–24. doi:10.1038/4447 CrossRef Lipshutz RJ, Fodor SPA, Gingeras TR, Lockhart DJ (1999) High density synthetic oligonucleotide arrays. Nat Genet 21:20–24. doi:10.​1038/​4447 CrossRef
17.
Zurück zum Zitat Kapranov P, Cawley SE, Drenkow J, Bekiranov S, Strausberg RL, Fodor SPA, Gingeras TR (2002) Large-scale transcriptional activity in chromosomes 21 and 22. Science 296(5569):916–919. doi:10.1126/science.1068597 CrossRef Kapranov P, Cawley SE, Drenkow J, Bekiranov S, Strausberg RL, Fodor SPA, Gingeras TR (2002) Large-scale transcriptional activity in chromosomes 21 and 22. Science 296(5569):916–919. doi:10.​1126/​science.​1068597 CrossRef
18.
Zurück zum Zitat Matsuzaki H, Dong SL, Loi H, Di XJ, Liu GY, Hubbell E, Law J, Berntsen T, Chadha M, Hui H, Yang GR, Kennedy GC, Webster TA, Cawley S, Walsh PS, Jones KW, Fodor SPA, Mei R (2004) Genotyping over 100,000 SNPs on a pair of oligonucleotide arrays. Nat Meth 1(2):109–111. doi:10.1038/Nmeth718 CrossRef Matsuzaki H, Dong SL, Loi H, Di XJ, Liu GY, Hubbell E, Law J, Berntsen T, Chadha M, Hui H, Yang GR, Kennedy GC, Webster TA, Cawley S, Walsh PS, Jones KW, Fodor SPA, Mei R (2004) Genotyping over 100,000 SNPs on a pair of oligonucleotide arrays. Nat Meth 1(2):109–111. doi:10.​1038/​Nmeth718 CrossRef
19.
Zurück zum Zitat Breitling F, Loffler F, Schirwitz C, Cheng YC, Markle F, Konig K, Felgenhauer T, Dorsam E, Bischoff FR, Nesterov-Muller A (2011) Alternative setups for automated peptide synthesis. Mini-Rev Org Chem 8(2):121–131CrossRef Breitling F, Loffler F, Schirwitz C, Cheng YC, Markle F, Konig K, Felgenhauer T, Dorsam E, Bischoff FR, Nesterov-Muller A (2011) Alternative setups for automated peptide synthesis. Mini-Rev Org Chem 8(2):121–131CrossRef
20.
Zurück zum Zitat Li SW, Marthandan N, Bowerman D, Garner HR, Kodadek T (2005) Photolithographic synthesis of cyclic peptide arrays using a differential deprotection strategy. Chem Commun 5:581–583. doi:10.1039/B415578e CrossRef Li SW, Marthandan N, Bowerman D, Garner HR, Kodadek T (2005) Photolithographic synthesis of cyclic peptide arrays using a differential deprotection strategy. Chem Commun 5:581–583. doi:10.​1039/​B415578e CrossRef
21.
Zurück zum Zitat Buus S, Rockberg J, Forsstrom B, Nilsson P, Uhlen M, Schafer-Nielsen C (2012) High-resolution mapping of linear antibody epitopes using ultrahigh-density peptide microarrays. Mol Cell Proteomics 11(12):1790–1800. doi:10.1074/mcp.M112.020800 CrossRef Buus S, Rockberg J, Forsstrom B, Nilsson P, Uhlen M, Schafer-Nielsen C (2012) High-resolution mapping of linear antibody epitopes using ultrahigh-density peptide microarrays. Mol Cell Proteomics 11(12):1790–1800. doi:10.​1074/​mcp.​M112.​020800 CrossRef
22.
Zurück zum Zitat Southern E (2007) Method and apparatus for analysing polynucleotide sequences. EP Patent 0,373,203 Southern E (2007) Method and apparatus for analysing polynucleotide sequences. EP Patent 0,373,203
24.
Zurück zum Zitat Frank R (1992) Spot-synthesis—an easy technique for the positionally addressable, parallel chemical synthesis on a membrane support. Tetrahedron 48(42):9217–9232CrossRef Frank R (1992) Spot-synthesis—an easy technique for the positionally addressable, parallel chemical synthesis on a membrane support. Tetrahedron 48(42):9217–9232CrossRef
25.
Zurück zum Zitat Nishioka GM (1995) Generation of combinatorial libraries. US Patent 5(449):754 Nishioka GM (1995) Generation of combinatorial libraries. US Patent 5(449):754
27.
Zurück zum Zitat Stadler V, Felgenhauer T, Beyer M, Fernandez S, Leibe K, Guttler S, Groning M, Konig K, Torralba G, Hausmann M, Lindenstruth V, Nesterov A, Block I, Pipkorn R, Poustka A, Bischoff FR, Breitling F (2008) Combinatorial synthesis of peptide arrays with a laser printer. Angew Chem Int Edit 47(37):7132–7135. doi:10.1002/anie.200801616 CrossRef Stadler V, Felgenhauer T, Beyer M, Fernandez S, Leibe K, Guttler S, Groning M, Konig K, Torralba G, Hausmann M, Lindenstruth V, Nesterov A, Block I, Pipkorn R, Poustka A, Bischoff FR, Breitling F (2008) Combinatorial synthesis of peptide arrays with a laser printer. Angew Chem Int Edit 47(37):7132–7135. doi:10.​1002/​anie.​200801616 CrossRef
28.
Zurück zum Zitat Beyer M, Nesterov A, Block I, Konig K, Felgenhauer T, Fernandez S, Leibe K, Torralba G, Hausmann M, Trunk U, Lindenstruth V, Bischoff FR, Stadler V, Breitling F (2007) Combinatorial synthesis of peptide arrays onto a microchip. Science 318(5858):1888. doi:10.1126/science.1149751 CrossRef Beyer M, Nesterov A, Block I, Konig K, Felgenhauer T, Fernandez S, Leibe K, Torralba G, Hausmann M, Trunk U, Lindenstruth V, Bischoff FR, Stadler V, Breitling F (2007) Combinatorial synthesis of peptide arrays onto a microchip. Science 318(5858):1888. doi:10.​1126/​science.​1149751 CrossRef
29.
Zurück zum Zitat Koenig K, Block I, Nesterov A, Torralba G, Fernandez S, Felgenhauer T, Leibe K, Schirwitz C, Loeffler F, Painke F, Wagner J, Trunk U, Bischoff FR, Breitling F, Stadler V, Hausmann M, Lindenstruth V (2010) Programmable high voltage CMOS chips for particle-based high-density combinatorial peptide synthesis. Sens Actuator B-Chem 147(2):418–427. doi:10.1016/j.snb.2009.12.039 CrossRef Koenig K, Block I, Nesterov A, Torralba G, Fernandez S, Felgenhauer T, Leibe K, Schirwitz C, Loeffler F, Painke F, Wagner J, Trunk U, Bischoff FR, Breitling F, Stadler V, Hausmann M, Lindenstruth V (2010) Programmable high voltage CMOS chips for particle-based high-density combinatorial peptide synthesis. Sens Actuator B-Chem 147(2):418–427. doi:10.​1016/​j.​snb.​2009.​12.​039 CrossRef
30.
Zurück zum Zitat Loeffler F, Wagner J, Koenig K, Maerkle F, Fernandez S, Schirwitz C, Torralba G, Hausmann M, Lindenstruth V, Bischoff FR, Breitling F, Nesterov A (2011) High-precision combinatorial deposition of micro particle patterns on a microelectronic chip. Aerosol Sci Tech 45(1):65–74. doi:10.1080/02786826.2010.517814 CrossRef Loeffler F, Wagner J, Koenig K, Maerkle F, Fernandez S, Schirwitz C, Torralba G, Hausmann M, Lindenstruth V, Bischoff FR, Breitling F, Nesterov A (2011) High-precision combinatorial deposition of micro particle patterns on a microelectronic chip. Aerosol Sci Tech 45(1):65–74. doi:10.​1080/​02786826.​2010.​517814 CrossRef
31.
Zurück zum Zitat Wagner J, Koenig K, Förtsch T, Loeffler F, Fernandez S, Felgenhauer T, Schirwitz C, Painke F, Torralba G, Lindenstruth V, Bischoff FR, Stadler V, Breitling F, Hausmann M, Nesterov-Müller A (2011) Microparticle transfer onto pixel electrodes of 45 μm pitch on HV-CMOS chips—simulation and experiment. Sens Actuator A-Phys 172(2):533–545CrossRef Wagner J, Koenig K, Förtsch T, Loeffler F, Fernandez S, Felgenhauer T, Schirwitz C, Painke F, Torralba G, Lindenstruth V, Bischoff FR, Stadler V, Breitling F, Hausmann M, Nesterov-Müller A (2011) Microparticle transfer onto pixel electrodes of 45 μm pitch on HV-CMOS chips—simulation and experiment. Sens Actuator A-Phys 172(2):533–545CrossRef
32.
Zurück zum Zitat Kawagishi Y, Ishida Y, Ishikawa K (1983) Metal complexes for use in developers for electrostatic images, charge control function. United States Patent 4404271 Kawagishi Y, Ishida Y, Ishikawa K (1983) Metal complexes for use in developers for electrostatic images, charge control function. United States Patent 4404271
33.
Zurück zum Zitat Nesterov A, Loffler F, Konig K, Trunk U, Leibe K, Felgenhauer T, Stadler V, Bischoff R, Breitling F, Lindenstruth V, Hausmann M (2007) Noncontact charge measurement of moving microparticles contacting dielectric surfaces. Rev Sci Instrum 78(7):075111. doi:10.1063/1.2756629 CrossRef Nesterov A, Loffler F, Konig K, Trunk U, Leibe K, Felgenhauer T, Stadler V, Bischoff R, Breitling F, Lindenstruth V, Hausmann M (2007) Noncontact charge measurement of moving microparticles contacting dielectric surfaces. Rev Sci Instrum 78(7):075111. doi:10.​1063/​1.​2756629 CrossRef
34.
Zurück zum Zitat Nesterov A, Loffler F, Konig K, Trunk U, Leibe K, Felgenhauer T, Bischoff FR, Breitling F, Lindenstruth V, Stadler V, Hausmann M (2007) Measurement of triboelectric charging of moving micro particles by means of an inductive cylindrical probe. J Phys D Appl Phys 40(19):6115–6120. doi:10.1088/0022-3727/40/19/053 CrossRef Nesterov A, Loffler F, Konig K, Trunk U, Leibe K, Felgenhauer T, Bischoff FR, Breitling F, Lindenstruth V, Stadler V, Hausmann M (2007) Measurement of triboelectric charging of moving micro particles by means of an inductive cylindrical probe. J Phys D Appl Phys 40(19):6115–6120. doi:10.​1088/​0022-3727/​40/​19/​053 CrossRef
35.
Zurück zum Zitat Nesterov A, Loffler F, Cheng YC, Torralba G, Konig K, Hausmann M, Lindenstruth V, Stadler V, Bischoff FR, Breitling F (2010) Characterization of triboelectrically charged particles deposited on dielectric surfaces. J Phys D Appl Phys 43(16):0022–3727. doi:10.1088/0022-3727/43/16/165301 Nesterov A, Loffler F, Cheng YC, Torralba G, Konig K, Hausmann M, Lindenstruth V, Stadler V, Bischoff FR, Breitling F (2010) Characterization of triboelectrically charged particles deposited on dielectric surfaces. J Phys D Appl Phys 43(16):0022–3727. doi:10.​1088/​0022-3727/​43/​16/​165301
37.
Zurück zum Zitat Stadler V, Kirmse R, Beyer M, Breitling F, Ludwig T, Bischoff FR (2008) PEGMA/MMA copolymer graftings: Generation, protein resistance, and a hydrophobic domain. Langmuir 24(15):8151–8157. doi:10.1021/La800772m CrossRef Stadler V, Kirmse R, Beyer M, Breitling F, Ludwig T, Bischoff FR (2008) PEGMA/MMA copolymer graftings: Generation, protein resistance, and a hydrophobic domain. Langmuir 24(15):8151–8157. doi:10.​1021/​La800772m CrossRef
38.
Zurück zum Zitat Nesterov A, Dörsam E, Cheng Y-C, Schirwitz C, Märkle F, Löffler F, König K, Stadler V, Bischoff R, Breitling F (2010) Peptide arrays with a chip. In: Uttamchandani, Mahesh Yao, Shao Q (ed) Small molecule microarrays: methods and protocols, vol 669. Humana Press, New York, pp 109–124 Nesterov A, Dörsam E, Cheng Y-C, Schirwitz C, Märkle F, Löffler F, König K, Stadler V, Bischoff R, Breitling F (2010) Peptide arrays with a chip. In: Uttamchandani, Mahesh Yao, Shao Q (ed) Small molecule microarrays: methods and protocols, vol 669. Humana Press, New York, pp 109–124
39.
Zurück zum Zitat Jacobs HO, Whitesides GM (2001) Submicrometer patterning of charge in thin-film electrets. Science 291(5509):1763–1766CrossRef Jacobs HO, Whitesides GM (2001) Submicrometer patterning of charge in thin-film electrets. Science 291(5509):1763–1766CrossRef
40.
Zurück zum Zitat Bieri NR, Chung J, Haferl SE, Poulikakos D, Grigoropoulos CP (2003) Microstructuring by printing and laser curing of nanoparticle solutions. Appl Phys Lett 82(20):3529–3531. doi:10.1063/1.1575502 CrossRef Bieri NR, Chung J, Haferl SE, Poulikakos D, Grigoropoulos CP (2003) Microstructuring by printing and laser curing of nanoparticle solutions. Appl Phys Lett 82(20):3529–3531. doi:10.​1063/​1.​1575502 CrossRef
41.
Zurück zum Zitat Wagner J, Loffler F, Konig K, Fernandez S, Nesterov-Muller A, Breitling F, Bischoff FR, Stadler V, Hausmann M, Lindenstruth V (2010) Quality analysis of selective microparticle deposition on electrically programmable surfaces. Rev Sci Instrum 81(7):073703. doi:10.1063/1.3456986 CrossRef Wagner J, Loffler F, Konig K, Fernandez S, Nesterov-Muller A, Breitling F, Bischoff FR, Stadler V, Hausmann M, Lindenstruth V (2010) Quality analysis of selective microparticle deposition on electrically programmable surfaces. Rev Sci Instrum 81(7):073703. doi:10.​1063/​1.​3456986 CrossRef
Metadaten
Titel
Printing Peptide Arrays with a Complementary Metal Oxide Semiconductor Chip
verfasst von
Felix F. Loeffler
Yun-Chien Cheng
Bastian Muenster
Jakob Striffler
Fanny C. Liu
F. Ralf Bischoff
Edgar Doersam
Frank Breitling
Alexander Nesterov-Mueller
Copyright-Jahr
2013
Verlag
Springer Berlin Heidelberg
DOI
https://doi.org/10.1007/10_2013_202

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.