Skip to main content
Erschienen in: Artificial Life and Robotics 2/2020

15.04.2020 | Original Article

Printing support hydrogels for creating vascular-like structures in stacked cell sheets

verfasst von: Ryu-ichiro Tanaka, Katsuhisa Sakaguchi, Shinjiro Umezu

Erschienen in: Artificial Life and Robotics | Ausgabe 2/2020

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Vascular structures are essential for the survival of thick artificial three-dimensional (3D) tissues. However, it is difficult to create high-cell-density artificial tissue with vascular structures of a few hundred micrometers in diameter. Bioprinting technology can create artificial 3D tissues with vascular structures of a few hundred micrometers in diameter, but the cell density of bio-printed artificial 3D tissues is low. On the other hand, cell sheet technology can create high-cell-density artificial 3D tissues by stacking, but it is not possible to set small vascular structures at any place. In this study, we successfully demonstrated high-cell-density artificial 3D tissues with vascular-like structures by stacking cell sheets combined with bioprinting technology.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Kang H-W et al (2016) A 3D bioprinting system to produce human-scale tissue constructs with structural integrity. Nat Biotechnol 34(3):312MathSciNetCrossRef Kang H-W et al (2016) A 3D bioprinting system to produce human-scale tissue constructs with structural integrity. Nat Biotechnol 34(3):312MathSciNetCrossRef
2.
Zurück zum Zitat Grigoryan B et al (2019) Multivascular networks and functional intravascular topologies within biocompatible hydrogels. Science 364(6439):458–464CrossRef Grigoryan B et al (2019) Multivascular networks and functional intravascular topologies within biocompatible hydrogels. Science 364(6439):458–464CrossRef
3.
Zurück zum Zitat Markstedt K et al (2015) 3D bioprinting human chondrocytes with nanocellulose–alginate bio-ink for cartilage tissue engineering applications. Biomacromol 16(5):1489–1496CrossRef Markstedt K et al (2015) 3D bioprinting human chondrocytes with nanocellulose–alginate bio-ink for cartilage tissue engineering applications. Biomacromol 16(5):1489–1496CrossRef
4.
Zurück zum Zitat Shrike ZY et al (2016) Bioprinted thrombosis-on-a-chip. Lab Chip 16(21):4097–4105CrossRef Shrike ZY et al (2016) Bioprinted thrombosis-on-a-chip. Lab Chip 16(21):4097–4105CrossRef
5.
Zurück zum Zitat Homan KA et al (2016) Bioprinting of 3D convoluted renal proximal tubules on perfusable chips. Sci Rep 6:34845CrossRef Homan KA et al (2016) Bioprinting of 3D convoluted renal proximal tubules on perfusable chips. Sci Rep 6:34845CrossRef
6.
Zurück zum Zitat Lozano R et al (2015) 3D printing of layered brain-like structures using peptide modified gellan gum substrates. Biomaterials 67:264–273CrossRef Lozano R et al (2015) 3D printing of layered brain-like structures using peptide modified gellan gum substrates. Biomaterials 67:264–273CrossRef
7.
Zurück zum Zitat Umezu S, Ohmori H (2014) Characteristics on micro-biofabrication by patterning with electrostatically injected droplet. CIRP Ann Manuf Technol 63(1):221–224CrossRef Umezu S, Ohmori H (2014) Characteristics on micro-biofabrication by patterning with electrostatically injected droplet. CIRP Ann Manuf Technol 63(1):221–224CrossRef
8.
Zurück zum Zitat Tanaka R-I, Sakaguchi K, Umezu S (2017) Fundamental characteristics of printed gelatin utilizing micro 3D printer. Artif Life Robot 22(3):316–320CrossRef Tanaka R-I, Sakaguchi K, Umezu S (2017) Fundamental characteristics of printed gelatin utilizing micro 3D printer. Artif Life Robot 22(3):316–320CrossRef
9.
Zurück zum Zitat Tan Yu et al (2014) 3D printing facilitated scaffold-free tissue unit fabrication. Biofabrication 6(2):024111CrossRef Tan Yu et al (2014) 3D printing facilitated scaffold-free tissue unit fabrication. Biofabrication 6(2):024111CrossRef
10.
Zurück zum Zitat Miller JS et al (2012) Rapid casting of patterned vascular networks for perfusable engineered three-dimensional tissues. Nat Mater 11(9):768CrossRef Miller JS et al (2012) Rapid casting of patterned vascular networks for perfusable engineered three-dimensional tissues. Nat Mater 11(9):768CrossRef
11.
Zurück zum Zitat Kolesky DB et al (2016) Three-dimensional bioprinting of thick vascularized tissues. Proc Natl Acad Sci 113(12):3179–3184CrossRef Kolesky DB et al (2016) Three-dimensional bioprinting of thick vascularized tissues. Proc Natl Acad Sci 113(12):3179–3184CrossRef
12.
Zurück zum Zitat Miri AK et al (2019) Multiscale bioprinting of vascularized models. Biomaterials 198:204–216CrossRef Miri AK et al (2019) Multiscale bioprinting of vascularized models. Biomaterials 198:204–216CrossRef
13.
Zurück zum Zitat Blanche C et al (2018) Perfused organ cell-dense macrotissues assembled from prefabricated living microtissues. Adv Biosyst 2(8):1800076CrossRef Blanche C et al (2018) Perfused organ cell-dense macrotissues assembled from prefabricated living microtissues. Adv Biosyst 2(8):1800076CrossRef
14.
Zurück zum Zitat Okano T et al (1993) A novel recovery system for cultured cells using plasma-treated polystyrene dishes grafted with poly(N-isopropylacrylamide). J Biomed Mater Res 27(10):1243–1251CrossRef Okano T et al (1993) A novel recovery system for cultured cells using plasma-treated polystyrene dishes grafted with poly(N-isopropylacrylamide). J Biomed Mater Res 27(10):1243–1251CrossRef
15.
Zurück zum Zitat Yamato M et al (2002) Thermally responsive polymer-grafted surfaces facilitate patterned cell seeding and co-culture. Biomaterials 23(2):561–567CrossRef Yamato M et al (2002) Thermally responsive polymer-grafted surfaces facilitate patterned cell seeding and co-culture. Biomaterials 23(2):561–567CrossRef
16.
Zurück zum Zitat Sekine W et al (2011) Thickness limitation and cell viability of multi-layered cell sheets and overcoming the diffusion limit by a porous-membrane culture insert. J Biochip Tissue Chip 01(01) Sekine W et al (2011) Thickness limitation and cell viability of multi-layered cell sheets and overcoming the diffusion limit by a porous-membrane culture insert. J Biochip Tissue Chip 01(01)
17.
Zurück zum Zitat Shimizu T et al (2006) Polysurgery of cell sheet grafts overcomes diffusion limits to produce thick, vascularized myocardial tissues. FASEB J 20(6):708–710CrossRef Shimizu T et al (2006) Polysurgery of cell sheet grafts overcomes diffusion limits to produce thick, vascularized myocardial tissues. FASEB J 20(6):708–710CrossRef
18.
Zurück zum Zitat Sekine H et al (2013) In vitro fabrication of functional three-dimensional tissues with perfusable blood vessels. Nat Commun 4(1) Sekine H et al (2013) In vitro fabrication of functional three-dimensional tissues with perfusable blood vessels. Nat Commun 4(1)
19.
Zurück zum Zitat Sakaguchi K et al (2013) In vitro engineering of vascularized tissue surrogates. Sci Rep 3(1) Sakaguchi K et al (2013) In vitro engineering of vascularized tissue surrogates. Sci Rep 3(1)
20.
Zurück zum Zitat Haraguchi Y et al (2018) Rapid fabrication of detachable three-dimensional tissues by layering of cell sheets with heating centrifuge. Biotechnol Prog 34(3):692–701CrossRef Haraguchi Y et al (2018) Rapid fabrication of detachable three-dimensional tissues by layering of cell sheets with heating centrifuge. Biotechnol Prog 34(3):692–701CrossRef
21.
Zurück zum Zitat Sakai S et al (2008) Oxidized alginate-cross-linked alginate/gelatin hydrogel fibers for fabricating tubular constructs with layered smooth muscle cells and endothelial cells in collagen gels. Biomacromolecules 9(7):2036–2041CrossRef Sakai S et al (2008) Oxidized alginate-cross-linked alginate/gelatin hydrogel fibers for fabricating tubular constructs with layered smooth muscle cells and endothelial cells in collagen gels. Biomacromolecules 9(7):2036–2041CrossRef
Metadaten
Titel
Printing support hydrogels for creating vascular-like structures in stacked cell sheets
verfasst von
Ryu-ichiro Tanaka
Katsuhisa Sakaguchi
Shinjiro Umezu
Publikationsdatum
15.04.2020
Verlag
Springer Japan
Erschienen in
Artificial Life and Robotics / Ausgabe 2/2020
Print ISSN: 1433-5298
Elektronische ISSN: 1614-7456
DOI
https://doi.org/10.1007/s10015-020-00605-7

Weitere Artikel der Ausgabe 2/2020

Artificial Life and Robotics 2/2020 Zur Ausgabe

Neuer Inhalt