Skip to main content
Erschienen in:

29.05.2024 | Research

Priority-Aware Resource Allocation for RIS-assisted Mobile Edge Computing Networks: A Deep Reinforcement Learning Approach

verfasst von: Jing Ling, Chao Li, Lianhong Zhang, Yuxin Wu, Maobin Tang, Fusheng Zhu

Erschienen in: Wireless Personal Communications | Ausgabe 1/2024

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

In this work, we investigate a reconfigurable intelligent surface (RIS) assisted mobile edge computing (MEC) network, where multiple users offload tasks to edge servers (ES) via RIS for accelerating computation. However, in practical MEC networks, computational tasks often exhibit diverse priorities, resulting in varying degrees of computational utility. This variability poses significant challenges to system optimization. In response to this challenge, we propose a deep reinforcement learning (DRL)-based approach to improve the performance of the RIS-assisted MEC network, where the task priority and resource allocations are jointly considered. Specifically, we exploit functions to evaluate the computational benefit of different tasks. Then, we devise a joint resource allocation scheme, which jointly considers RISs’ phase shifts, user-RIS allocation, and task offloading, to maximize the system utility. To solve the problem under the complicated environment of fading channels and various task priorities, we employ the DRL approach to obtain effective resource allocation strategies to improve the system performance. Simulations are finally conducted to validate the effectiveness and superiority of the proposed schemes in this work.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Fußnoten
1
According to the diving RIS reflection elements, the derived optimization solution can be used for the one-to-one framework of user-RIS and is also applicable to the many-to-one framework, which can further serve to solve the user-RIS with many-to-one scenarios.
 
Literatur
1.
Zurück zum Zitat Hu, X., Zhong, C., Zhu, Y., Chen, X., & Zhang, Z. (2020). Programmable metasurface-based multicast systems: Design and analysis. IEEE Journal on Selected Areas in Communications, 38(8), 1763–1776.CrossRef Hu, X., Zhong, C., Zhu, Y., Chen, X., & Zhang, Z. (2020). Programmable metasurface-based multicast systems: Design and analysis. IEEE Journal on Selected Areas in Communications, 38(8), 1763–1776.CrossRef
2.
Zurück zum Zitat Tang, S., Xia, J., Fan, L., Lei, X., Xu, W., & Nallanathan, A. (2022). Dilated convolution based CSI feedback compression for massive MIMO systems. IEEE Transactions on Vehicular Technology, 71(10), 11216–11221.CrossRef Tang, S., Xia, J., Fan, L., Lei, X., Xu, W., & Nallanathan, A. (2022). Dilated convolution based CSI feedback compression for massive MIMO systems. IEEE Transactions on Vehicular Technology, 71(10), 11216–11221.CrossRef
3.
Zurück zum Zitat Zhai, X. B., Zheng, L., & Tan, C. W. (2014). Energy-infeasibility tradeoff in cognitive radio networks: Price-driven spectrum access algorithms. IEEE Journal on Selected Areas in Communications, 32(3), 528–538.CrossRef Zhai, X. B., Zheng, L., & Tan, C. W. (2014). Energy-infeasibility tradeoff in cognitive radio networks: Price-driven spectrum access algorithms. IEEE Journal on Selected Areas in Communications, 32(3), 528–538.CrossRef
4.
Zurück zum Zitat Dai, M., Zheng, Z., Zhang, S., Wang, H., & Lin, X. (2020). SAZD: A low computational load coded distributed computing framework for IoT systems. IEEE Internet of Things Journal, 7(4), 3640–3649.CrossRef Dai, M., Zheng, Z., Zhang, S., Wang, H., & Lin, X. (2020). SAZD: A low computational load coded distributed computing framework for IoT systems. IEEE Internet of Things Journal, 7(4), 3640–3649.CrossRef
5.
Zurück zum Zitat Liu, X., Sun, Q., Lu, W., Wu, C., & Ding, H. (2020). Big-data-based intelligent spectrum sensing for heterogeneous spectrum communications in 5G. IEEE Wireless Communications, 27(5), 67–73.CrossRef Liu, X., Sun, Q., Lu, W., Wu, C., & Ding, H. (2020). Big-data-based intelligent spectrum sensing for heterogeneous spectrum communications in 5G. IEEE Wireless Communications, 27(5), 67–73.CrossRef
6.
Zurück zum Zitat Lin, W., Yu, T., Gao, C., Liu, F., Li, T., Fong, S., & Wang, Y. (2021). A hardware-aware CPU power measurement based on the power-exponent function model for cloud servers. Information Sciences, 547, 1045–1065.CrossRef Lin, W., Yu, T., Gao, C., Liu, F., Li, T., Fong, S., & Wang, Y. (2021). A hardware-aware CPU power measurement based on the power-exponent function model for cloud servers. Information Sciences, 547, 1045–1065.CrossRef
7.
Zurück zum Zitat Dao, N., Vu, D., Lee, Y., Cho, S., Cho, C., & Kim, H. (2018). Pattern-identified online task scheduling in multitier edge computing for industrial IoT services. Mobile Information Systems, 2018, 2101206–121012069.CrossRef Dao, N., Vu, D., Lee, Y., Cho, S., Cho, C., & Kim, H. (2018). Pattern-identified online task scheduling in multitier edge computing for industrial IoT services. Mobile Information Systems, 2018, 2101206–121012069.CrossRef
8.
Zurück zum Zitat Lee, S., Lee, S., & Kim, H. (2023). Differential security barriers for virtual emotion detection in maritime transportation stations with cooperative mobile robots and UAVs. IEEE Transactions on Intelligent Transportation Systems, 24(2), 2461–2471. Lee, S., Lee, S., & Kim, H. (2023). Differential security barriers for virtual emotion detection in maritime transportation stations with cooperative mobile robots and UAVs. IEEE Transactions on Intelligent Transportation Systems, 24(2), 2461–2471.
9.
Zurück zum Zitat Tariq, F., Khandaker, M. R. A., Wong, K., Imran, M. A., Bennis, M., & Debbah, M. (2020). A speculative study on 6G. IEEE Wireless Communications, 27(4), 118–125.CrossRef Tariq, F., Khandaker, M. R. A., Wong, K., Imran, M. A., Bennis, M., & Debbah, M. (2020). A speculative study on 6G. IEEE Wireless Communications, 27(4), 118–125.CrossRef
10.
Zurück zum Zitat Kai, C., Zhou, H., Yi, Y., & Huang, W. (2021). Collaborative cloud-edge-end task offloading in mobile-edge computing networks with limited communication capability. IEEE Transactions on Cognitive Communications and Networking, 7(2), 624–634.CrossRef Kai, C., Zhou, H., Yi, Y., & Huang, W. (2021). Collaborative cloud-edge-end task offloading in mobile-edge computing networks with limited communication capability. IEEE Transactions on Cognitive Communications and Networking, 7(2), 624–634.CrossRef
11.
Zurück zum Zitat Chen, H., Yang, H. H., Tao, Q., & Zhong, C. (2022) Coverage analysis of cell-edge users in reconfigurable intelligent surface-assisted cellular networks. In 14th International conference on wireless communications and signal processing WCSP 2022, Nanjing, China (pp. 759–763). Chen, H., Yang, H. H., Tao, Q., & Zhong, C. (2022) Coverage analysis of cell-edge users in reconfigurable intelligent surface-assisted cellular networks. In 14th International conference on wireless communications and signal processing WCSP 2022, Nanjing, China (pp. 759–763).
12.
Zurück zum Zitat Chen, G., Wu, Q., Chen, W., Ng, D. W. K., & Hanzo, L. (2023). IRS-aided wireless powered MEC systems: TDMA or NOMA for computation offloading? IEEE Transactions on Wireless Communications, 22(2), 1201–1218.CrossRef Chen, G., Wu, Q., Chen, W., Ng, D. W. K., & Hanzo, L. (2023). IRS-aided wireless powered MEC systems: TDMA or NOMA for computation offloading? IEEE Transactions on Wireless Communications, 22(2), 1201–1218.CrossRef
13.
Zurück zum Zitat Sun, Z., & Jing, Y. (2022). On the performance of multi-antenna IRS-assisted NOMA networks with continuous and discrete IRS phase shifting. IEEE Transactions on Wireless Communications, 21(5), 3012–3023.CrossRef Sun, Z., & Jing, Y. (2022). On the performance of multi-antenna IRS-assisted NOMA networks with continuous and discrete IRS phase shifting. IEEE Transactions on Wireless Communications, 21(5), 3012–3023.CrossRef
14.
Zurück zum Zitat Feng, Y., Chen, J., Xue, X., Wu, K., Zhou, Y., & Yang, L. (2022). Max-min fair beamforming for IRS-aided secure NOMA systems. IEEE Communications Letters, 26(2), 234–238.CrossRef Feng, Y., Chen, J., Xue, X., Wu, K., Zhou, Y., & Yang, L. (2022). Max-min fair beamforming for IRS-aided secure NOMA systems. IEEE Communications Letters, 26(2), 234–238.CrossRef
15.
Zurück zum Zitat Ni, W., Liu, X., Liu, Y., Tian, H., & Chen, Y. (2021). Resource allocation for multi-cell IRS-aided NOMA networks. IEEE Transactions on Wireless Communications, 20(7), 4253–4268.CrossRef Ni, W., Liu, X., Liu, Y., Tian, H., & Chen, Y. (2021). Resource allocation for multi-cell IRS-aided NOMA networks. IEEE Transactions on Wireless Communications, 20(7), 4253–4268.CrossRef
16.
Zurück zum Zitat Shehab, M. J., Ciftler, B. S., Khattab, T., Abdallah, M. M., & Trinchero, D. (2022). Deep reinforcement learning powered IRS-assisted downlink NOMA. IEEE Open Journal of the Communications Society, 3, 729–739.CrossRef Shehab, M. J., Ciftler, B. S., Khattab, T., Abdallah, M. M., & Trinchero, D. (2022). Deep reinforcement learning powered IRS-assisted downlink NOMA. IEEE Open Journal of the Communications Society, 3, 729–739.CrossRef
17.
Zurück zum Zitat Solanki, S., Park, J., & Lee, I. (2022). On the performance of IRS-aided UAV networks with NOMA. IEEE Transactions on Vehicular Technology, 71(8), 9038–9043.CrossRef Solanki, S., Park, J., & Lee, I. (2022). On the performance of IRS-aided UAV networks with NOMA. IEEE Transactions on Vehicular Technology, 71(8), 9038–9043.CrossRef
18.
Zurück zum Zitat Tao, Q., Wang, J., & Zhong, C. (2020). Performance analysis of intelligent reflecting surface aided communication systems. IEEE Communications Letters, 24(11), 2464–2468.CrossRef Tao, Q., Wang, J., & Zhong, C. (2020). Performance analysis of intelligent reflecting surface aided communication systems. IEEE Communications Letters, 24(11), 2464–2468.CrossRef
19.
Zurück zum Zitat Wu, W., Wang, Z., Yuan, L., Zhou, F., Lang, F., Wang, B., & Wu, Q. (2021). IRS-enhanced energy detection for spectrum sensing in cognitive radio networks. IEEE Wireless Communications Letters, 10(10), 2254–2258.CrossRef Wu, W., Wang, Z., Yuan, L., Zhou, F., Lang, F., Wang, B., & Wu, Q. (2021). IRS-enhanced energy detection for spectrum sensing in cognitive radio networks. IEEE Wireless Communications Letters, 10(10), 2254–2258.CrossRef
20.
Zurück zum Zitat Mukherjee, M., Kumar, V., Maity, D., Matam, R., Mavromoustakis, C. X., Zhang, Q., & Mastorakis, G. (2020) Delay-sensitive and priority-aware task offloading for edge computing-assisted healthcare services. In IEEE global communications conference, GLOBECOM 2020, Virtual Event, Taiwan (pp. 1–5). Mukherjee, M., Kumar, V., Maity, D., Matam, R., Mavromoustakis, C. X., Zhang, Q., & Mastorakis, G. (2020) Delay-sensitive and priority-aware task offloading for edge computing-assisted healthcare services. In IEEE global communications conference, GLOBECOM 2020, Virtual Event, Taiwan (pp. 1–5).
21.
Zurück zum Zitat Paymard, P., & Mokari, N. (2022). Resource allocation in PD-NOMA-based mobile edge computing system: Multiuser and multitask priority. Transactions on Emerging Telecommunications Technologies, 33(3), e3631.CrossRef Paymard, P., & Mokari, N. (2022). Resource allocation in PD-NOMA-based mobile edge computing system: Multiuser and multitask priority. Transactions on Emerging Telecommunications Technologies, 33(3), e3631.CrossRef
22.
Zurück zum Zitat Guo, Y., Zhao, R., Lai, S., Fan, L., Lei, X., & Karagiannidis, G. K. (2022). Distributed machine learning for multiuser mobile edge computing systems. IEEE Journal of Selected Topics in Signal Processing, 16(3), 460–473.CrossRef Guo, Y., Zhao, R., Lai, S., Fan, L., Lei, X., & Karagiannidis, G. K. (2022). Distributed machine learning for multiuser mobile edge computing systems. IEEE Journal of Selected Topics in Signal Processing, 16(3), 460–473.CrossRef
23.
Zurück zum Zitat Zhou, W., Fan, L., Zhou, F., Li, F., Lei, X., Xu, W., & Nallanathan, A. (2023). Priority-aware resource scheduling for UAV-mounted mobile edge computing networks. IEEE Transactions on Vehicular Technology, 72(7), 9682–9687.CrossRef Zhou, W., Fan, L., Zhou, F., Li, F., Lei, X., Xu, W., & Nallanathan, A. (2023). Priority-aware resource scheduling for UAV-mounted mobile edge computing networks. IEEE Transactions on Vehicular Technology, 72(7), 9682–9687.CrossRef
24.
Zurück zum Zitat Yang, B., Cao, X., Huang, C., Yuen, C., Renzo, M. D., Guan, Y. L., Niyato, D., Qian, L., & Debbah, M. (2022). Federated spectrum learning for reconfigurable intelligent surfaces-aided wireless edge networks. IEEE Transactions on Wireless Communications, 21(11), 9610–9626.CrossRef Yang, B., Cao, X., Huang, C., Yuen, C., Renzo, M. D., Guan, Y. L., Niyato, D., Qian, L., & Debbah, M. (2022). Federated spectrum learning for reconfigurable intelligent surfaces-aided wireless edge networks. IEEE Transactions on Wireless Communications, 21(11), 9610–9626.CrossRef
25.
Zurück zum Zitat Shi, J., Du, J., Wang, J., Wang, J., & Yuan, J. (2020). Priority-aware task offloading in vehicular fog computing based on deep reinforcement learning. IEEE Transactions on Vehicular Technology, 69(12), 16067–16081.CrossRef Shi, J., Du, J., Wang, J., Wang, J., & Yuan, J. (2020). Priority-aware task offloading in vehicular fog computing based on deep reinforcement learning. IEEE Transactions on Vehicular Technology, 69(12), 16067–16081.CrossRef
26.
Zurück zum Zitat Pan, J., Huang, J., Cheng, G., & Zeng, Y. (2023). Reinforcement learning for automatic quadrilateral mesh generation: A soft actor-critic approach. Neural Networks, 157, 288–304.CrossRef Pan, J., Huang, J., Cheng, G., & Zeng, Y. (2023). Reinforcement learning for automatic quadrilateral mesh generation: A soft actor-critic approach. Neural Networks, 157, 288–304.CrossRef
27.
Zurück zum Zitat Qin, Y., Zhang, Z., Huangfu, W., Zhang, H., & Long, K. (2023). Cooperative resource allocation based on soft actor-critic with data augmentation in cellular network. IEEE Wireless Communications Letters, 12(3), 396–400.CrossRef Qin, Y., Zhang, Z., Huangfu, W., Zhang, H., & Long, K. (2023). Cooperative resource allocation based on soft actor-critic with data augmentation in cellular network. IEEE Wireless Communications Letters, 12(3), 396–400.CrossRef
28.
Zurück zum Zitat Haarnoja, T., Zhou, A., Hartikainen, K., Tucker, G., Ha, S., Tan, J., Kumar, V., Zhu, H., Gupta, A., Abbeel, P., & Levine, S. (2018) Soft actor-critic algorithms and applications. CoRR abs/1812.05905 Haarnoja, T., Zhou, A., Hartikainen, K., Tucker, G., Ha, S., Tan, J., Kumar, V., Zhu, H., Gupta, A., Abbeel, P., & Levine, S. (2018) Soft actor-critic algorithms and applications. CoRR abs/1812.05905
29.
Zurück zum Zitat Wu, D., Liu, T., Li, Z., Tang, T., & Wang, R. (2023). Delay-aware edge-terminal collaboration in green internet of vehicles: A multiagent soft actor-critic approach. IEEE Transactions on Green Communications and Networking, 7(2), 1090–1102.CrossRef Wu, D., Liu, T., Li, Z., Tang, T., & Wang, R. (2023). Delay-aware edge-terminal collaboration in green internet of vehicles: A multiagent soft actor-critic approach. IEEE Transactions on Green Communications and Networking, 7(2), 1090–1102.CrossRef
30.
Zurück zum Zitat Zeng, H., Li, X., Bi, S., & Lin, X. (2022). Delay-sensitive task offloading with D2D service-sharing in mobile edge computing networks. IEEE Wireless Communications Letters, 11(3), 607–611.CrossRef Zeng, H., Li, X., Bi, S., & Lin, X. (2022). Delay-sensitive task offloading with D2D service-sharing in mobile edge computing networks. IEEE Wireless Communications Letters, 11(3), 607–611.CrossRef
Metadaten
Titel
Priority-Aware Resource Allocation for RIS-assisted Mobile Edge Computing Networks: A Deep Reinforcement Learning Approach
verfasst von
Jing Ling
Chao Li
Lianhong Zhang
Yuxin Wu
Maobin Tang
Fusheng Zhu
Publikationsdatum
29.05.2024
Verlag
Springer US
Erschienen in
Wireless Personal Communications / Ausgabe 1/2024
Print ISSN: 0929-6212
Elektronische ISSN: 1572-834X
DOI
https://doi.org/10.1007/s11277-024-11227-8