Skip to main content
Erschienen in: Wireless Networks 3/2020

23.09.2019

Priority based IEEE 802.15.4 MAC by varying GTS to satisfy heterogeneous traffic in healthcare application

verfasst von: Rajni Gupta, Suparna Biswas

Erschienen in: Wireless Networks | Ausgabe 3/2020

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

This work presents the design of IEEE 802.15.4, the Medium Access Control protocol to ensure that medical data must be delivered in time, along with satisfying QoS requirements of Wireless Body Sensor Network based healthcare applications. Here, we propose the allocation of Guaranteed Time Slots (GTS) as per the varying rate of heterogeneous data traffic sensed by different sensor nodes ensuring energy efficiency, low latency, high throughput etc. Due to the sudden critical condition of the patient, the sensor node with an abrupt increase in data rate is assigned the highest priority and allocated dynamically more GTS. We have simulated different scenarios representing the normal and critical conditions of patients using Castalia 3.3 and OMNeT++. The temporal variation incorporates the movement associated with body which results to capture the fading arises due to the changing environment and movement of the nodes. This gives the practical variation associated with the nodes. We have compared among six different data traffic handling techniques: first where no nodes are allocated any GTS, second where all nodes are allocated fixed number of GTS and third where we propose dynamic GTS allocation as per the varying rate of data traffic. These three conditions are tested with Temporal and noTemporal variation. We have performed the simulation with 8 nodes and 11 nodes. The results show that in proposed technique, there is a significant reduction in energy consumption by \(\approx 20\%\) by varyGTS vonfiguration. The average of varyGTS, Temporal and varyGTS, noTemporal packets received is \(\approx 76\%\) in 8 nodes and \(\approx 66\%\) by varyGTS, noTemporal in 11 nodes within the 240 ms delay permissible in healthcare application.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Akbar, M. S., Yu, H., & Cang, S. (2016). Delay, reliability, and throughput based QoS profile: A MAC layer performance optimization mechanism for biomedical applications in wireless body area sensor networks. Journal of Sensors, 2016, 1–17.CrossRef Akbar, M. S., Yu, H., & Cang, S. (2016). Delay, reliability, and throughput based QoS profile: A MAC layer performance optimization mechanism for biomedical applications in wireless body area sensor networks. Journal of Sensors, 2016, 1–17.CrossRef
2.
Zurück zum Zitat Akbar, M. S., Yu, H., & Cang, S. (2017). IEEE 802.15. 4 frame aggregation enhancement to provide high performance in life-critical patient monitoring systems. Sensors, 17(2), 1–25.CrossRef Akbar, M. S., Yu, H., & Cang, S. (2017). IEEE 802.15. 4 frame aggregation enhancement to provide high performance in life-critical patient monitoring systems. Sensors, 17(2), 1–25.CrossRef
3.
Zurück zum Zitat Akhavan, M. R., Aijaz, A., Choobkar, S., & Aghvami, A. H. (2014). On the multi-hop performance of receiver based mac protocol in routing protocol for low-power and lossy networks-based low power and lossy wireless sensor networks. IET Wireless Sensor Systems, 5(1), 42–49.CrossRef Akhavan, M. R., Aijaz, A., Choobkar, S., & Aghvami, A. H. (2014). On the multi-hop performance of receiver based mac protocol in routing protocol for low-power and lossy networks-based low power and lossy wireless sensor networks. IET Wireless Sensor Systems, 5(1), 42–49.CrossRef
5.
Zurück zum Zitat Boulis, A., Tselishchev, Y., Libman, L., Smith, D., & Hanlen, L. (2012). Impact of wireless channel temporal variation on mac design for body area networks. ACM Transactions on Embedded Computing Systems (TECS), 11(S2), 51.CrossRef Boulis, A., Tselishchev, Y., Libman, L., Smith, D., & Hanlen, L. (2012). Impact of wireless channel temporal variation on mac design for body area networks. ACM Transactions on Embedded Computing Systems (TECS), 11(S2), 51.CrossRef
6.
Zurück zum Zitat Chen, G. T., Chen, W. T., & Shen, S. H. (2014). 2L-MAC: A MAC protocol with two-layer interference mitigation in wireless body area networks for medical applications (pp. 3523–3528). IEEE. Chen, G. T., Chen, W. T., & Shen, S. H. (2014). 2L-MAC: A MAC protocol with two-layer interference mitigation in wireless body area networks for medical applications (pp. 3523–3528). IEEE.
7.
Zurück zum Zitat Ergen, S. C. (2004). Zigbee/IEEE 802.15. 4 summary. UC Berkeley, September 10. Ergen, S. C. (2004). Zigbee/IEEE 802.15. 4 summary. UC Berkeley, September 10.
8.
Zurück zum Zitat Fan, S., Li, J., Sun, H., & Wang, R. (2010). Throughput analysis of GTS allocation in beacon enabled IEEE 802.15. 4 (Vol. 4, pp. 561–565). IEEE. Fan, S., Li, J., Sun, H., & Wang, R. (2010). Throughput analysis of GTS allocation in beacon enabled IEEE 802.15. 4 (Vol. 4, pp. 561–565). IEEE.
9.
Zurück zum Zitat Haque, S. E. (2012). Efficient GTS allocation schemes for IEEE 802.15. 4 (pp. 1–67). Thesis. Haque, S. E. (2012). Efficient GTS allocation schemes for IEEE 802.15. 4 (pp. 1–67). Thesis.
10.
Zurück zum Zitat Hegde, A., & Prasad, D. (2017). Evaluation of PHY and MAC layer in WBAN using Castalia: Lower layer parameters of WBAN in Castalia. In 2017 international conference on intelligent sustainable systems (ICISS) (pp. 395–399). IEEE. Hegde, A., & Prasad, D. (2017). Evaluation of PHY and MAC layer in WBAN using Castalia: Lower layer parameters of WBAN in Castalia. In 2017 international conference on intelligent sustainable systems (ICISS) (pp. 395–399). IEEE.
11.
Zurück zum Zitat Huang, Y. K., Pang, A. C., & Hung, H. N. (2008). An adaptive GTS allocation scheme for IEEE 802.15. 4. IEEE Transactions on Parallel and Distributed Systems, 19(5), 641–651.CrossRef Huang, Y. K., Pang, A. C., & Hung, H. N. (2008). An adaptive GTS allocation scheme for IEEE 802.15. 4. IEEE Transactions on Parallel and Distributed Systems, 19(5), 641–651.CrossRef
12.
Zurück zum Zitat Hussain, M. A., Alam, M. N., & Kwak, K. S. (2011). Directional MAC approach for wireless body area networks. Sensors, 11(1), 771–784.CrossRef Hussain, M. A., Alam, M. N., & Kwak, K. S. (2011). Directional MAC approach for wireless body area networks. Sensors, 11(1), 771–784.CrossRef
13.
Zurück zum Zitat Kang, B., Chung, C., & Kim, J. (2016). Energy-efficient beacon listening scheme for periodic vital signal monitoring. Electronics Letters, 52(18), 1516–1518.CrossRef Kang, B., Chung, C., & Kim, J. (2016). Energy-efficient beacon listening scheme for periodic vital signal monitoring. Electronics Letters, 52(18), 1516–1518.CrossRef
14.
Zurück zum Zitat Kong, R., Chen, C., Yu, W., Yang, B., & Guan, X. (2013). Data priority based slot allocation for wireless body area networks (pp. 1–6). IEEE. Kong, R., Chen, C., Yu, W., Yang, B., & Guan, X. (2013). Data priority based slot allocation for wireless body area networks (pp. 1–6). IEEE.
15.
Zurück zum Zitat Kwak, K. S., Ullah, S., & Ullah, N. (2010). An overview of IEEE 802.15. 6 standard (pp. 1–6). IEEE. Kwak, K. S., Ullah, S., & Ullah, N. (2010). An overview of IEEE 802.15. 6 standard (pp. 1–6). IEEE.
16.
Zurück zum Zitat Latre, B., Braem, B., Moerman, I., Blondia, C., & Demeester, P. (2011). A survey on wireless body area networks. Wireless Networks, 17(1), 1–18.CrossRef Latre, B., Braem, B., Moerman, I., Blondia, C., & Demeester, P. (2011). A survey on wireless body area networks. Wireless Networks, 17(1), 1–18.CrossRef
17.
Zurück zum Zitat Manirabona, A., & Fourati, L. C. (2018). A 4-tiers architecture for mobile WBAN based health remote monitoring system. Wireless Networks, 24, 2179–2190.CrossRef Manirabona, A., & Fourati, L. C. (2018). A 4-tiers architecture for mobile WBAN based health remote monitoring system. Wireless Networks, 24, 2179–2190.CrossRef
18.
Zurück zum Zitat Marco, Z., & Krishnamachari, B. (2004). Analyzing the transitional region in low power wireless links (pp. 1–10). Marco, Z., & Krishnamachari, B. (2004). Analyzing the transitional region in low power wireless links (pp. 1–10).
19.
Zurück zum Zitat Mouzehkesh, N., Zia, T., Shafigh, S., & Zheng, L. (2015). Dynamic backoff scheduling of low data rate applications in wireless body area networks. Wireless Networks, 21(8), 2571–2592.CrossRef Mouzehkesh, N., Zia, T., Shafigh, S., & Zheng, L. (2015). Dynamic backoff scheduling of low data rate applications in wireless body area networks. Wireless Networks, 21(8), 2571–2592.CrossRef
20.
Zurück zum Zitat Movassaghi, S., Abolhasan, M., Lipman, J., Smith, D., & Jamalipour, A. (2014). Wireless body area networks: A survey. IEEE Communications Surveys and Tutorials, 16(3), 1658–1686.CrossRef Movassaghi, S., Abolhasan, M., Lipman, J., Smith, D., & Jamalipour, A. (2014). Wireless body area networks: A survey. IEEE Communications Surveys and Tutorials, 16(3), 1658–1686.CrossRef
21.
Zurück zum Zitat Qadri, S. F., Awan, S. A., Amjad, M., Anwar, M., & Shehzad, S. (2013). Applications, challenges, security of wireless body area networks (WBANs) and functionality of IEEE 802.15.4/ZIGBEE. Science International (Lahore), 25(4), 697–702. Qadri, S. F., Awan, S. A., Amjad, M., Anwar, M., & Shehzad, S. (2013). Applications, challenges, security of wireless body area networks (WBANs) and functionality of IEEE 802.15.4/ZIGBEE. Science International (Lahore), 25(4), 697–702.
22.
Zurück zum Zitat Rahman, M. O., Hong, C. S., Lee, S., & Bang, Y. C. (2011). Atlas: a traffic load aware sensor MAC design for collaborative body area sensor networks. Sensors, 11(12), 11560–11580.CrossRef Rahman, M. O., Hong, C. S., Lee, S., & Bang, Y. C. (2011). Atlas: a traffic load aware sensor MAC design for collaborative body area sensor networks. Sensors, 11(12), 11560–11580.CrossRef
23.
Zurück zum Zitat Rezvani, S., & Ghorashi, S. A. (2013). Context aware and channel-based resource allocation for wireless body area networks. IET Wireless Sensor Systems, 3(1), 16–25.CrossRef Rezvani, S., & Ghorashi, S. A. (2013). Context aware and channel-based resource allocation for wireless body area networks. IET Wireless Sensor Systems, 3(1), 16–25.CrossRef
24.
Zurück zum Zitat Shuai, J., Zou, W., & Zhou, Z. (2013). Priority-based adaptive timeslot allocation scheme for wireless body area network (pp. 609–614). IEEE. Shuai, J., Zou, W., & Zhou, Z. (2013). Priority-based adaptive timeslot allocation scheme for wireless body area network (pp. 609–614). IEEE.
25.
Zurück zum Zitat Smith, D. B., Boulis, A., & Tselishchev, Y. (2012). Efficient conditional probability link modeling capturing temporal variations in body area networks. In Proceedings of the 15th ACM international conference on Modeling, analysis and simulation of wireless and mobile systems (pp. 271–276). ACM. Smith, D. B., Boulis, A., & Tselishchev, Y. (2012). Efficient conditional probability link modeling capturing temporal variations in body area networks. In Proceedings of the 15th ACM international conference on Modeling, analysis and simulation of wireless and mobile systems (pp. 271–276). ACM.
26.
Zurück zum Zitat Ullah, S., Higgins, H., Braem, B., Latre, B., Blondia, C., Moerman, I., et al. (2012). A comprehensive survey of wireless body area networks. Journal of Medical Systems, 36(3), 1065–1094.CrossRef Ullah, S., Higgins, H., Braem, B., Latre, B., Blondia, C., Moerman, I., et al. (2012). A comprehensive survey of wireless body area networks. Journal of Medical Systems, 36(3), 1065–1094.CrossRef
27.
Zurück zum Zitat Wei, Z., Sun, Y., & Ji, Y. (2017). Collision analysis of CSMA/CA based MAC protocol for duty cycled WBANs. Wireless Networks, 23(5), 1429–1447.CrossRef Wei, Z., Sun, Y., & Ji, Y. (2017). Collision analysis of CSMA/CA based MAC protocol for duty cycled WBANs. Wireless Networks, 23(5), 1429–1447.CrossRef
28.
Zurück zum Zitat Yoon, J. S., Ahn, G. S., Joo, S. S., & Lee, M. J. (2010). PNP-MAC: preemptive slot allocation and non-preemptive transmission for providing QoS in body area networks (pp. 1–5). IEEE. Yoon, J. S., Ahn, G. S., Joo, S. S., & Lee, M. J. (2010). PNP-MAC: preemptive slot allocation and non-preemptive transmission for providing QoS in body area networks (pp. 1–5). IEEE.
29.
Zurück zum Zitat Zaouiat, C., & Latif, A. (2017). Performances comparison of IEEE 802.15.6 and IEEE 802.15.4. International Journal of Advanced Computer Science and Application, 8(11), 461–467. Zaouiat, C., & Latif, A. (2017). Performances comparison of IEEE 802.15.6 and IEEE 802.15.4. International Journal of Advanced Computer Science and Application, 8(11), 461–467.
30.
Zurück zum Zitat Zhang, Y., & Dolmans, G. (2011). Priority-guaranteed MAC protocol for emerging wireless body area networks. annals of telecommunications annales des telecommunications, 66(3–4), 229–241.CrossRef Zhang, Y., & Dolmans, G. (2011). Priority-guaranteed MAC protocol for emerging wireless body area networks. annals of telecommunications annales des telecommunications, 66(3–4), 229–241.CrossRef
31.
Zurück zum Zitat Takabayashi, K., Tanaka, H., Sugimoto, C., Sakakibara, K., & Kohno, R. (2018). Performance evaluation of a quality of service control scheme in multi-hop WBAN based on IEEE 802.15. 6. Sensors, 18(11), 1–20.CrossRef Takabayashi, K., Tanaka, H., Sugimoto, C., Sakakibara, K., & Kohno, R. (2018). Performance evaluation of a quality of service control scheme in multi-hop WBAN based on IEEE 802.15. 6. Sensors, 18(11), 1–20.CrossRef
32.
Zurück zum Zitat Omuro, Y., Takabayashi, K., & Sakakibara, K. (2018). Detection scheme of selfish node in WBAN utilizing CSMA/CA based on IEEE 802.15. 6. In 2018 12th international symposium on medical information and communication technology (ISMICT) (pp. 1–4). Omuro, Y., Takabayashi, K., & Sakakibara, K. (2018). Detection scheme of selfish node in WBAN utilizing CSMA/CA based on IEEE 802.15. 6. In 2018 12th international symposium on medical information and communication technology (ISMICT) (pp. 1–4).
Metadaten
Titel
Priority based IEEE 802.15.4 MAC by varying GTS to satisfy heterogeneous traffic in healthcare application
verfasst von
Rajni Gupta
Suparna Biswas
Publikationsdatum
23.09.2019
Verlag
Springer US
Erschienen in
Wireless Networks / Ausgabe 3/2020
Print ISSN: 1022-0038
Elektronische ISSN: 1572-8196
DOI
https://doi.org/10.1007/s11276-019-02149-6

Weitere Artikel der Ausgabe 3/2020

Wireless Networks 3/2020 Zur Ausgabe

Neuer Inhalt