Skip to main content
main-content

Tipp

Weitere Artikel dieser Ausgabe durch Wischen aufrufen

05.01.2018 | Original Paper | Ausgabe 5/2018

Journal of Business Economics 5/2018

Privacy-preserving condition-based forecasting using machine learning

Zeitschrift:
Journal of Business Economics > Ausgabe 5/2018
Autoren:
Fabian Taigel, Anselme K. Tueno, Richard Pibernik
Wichtige Hinweise
The work was financially supported by the PRACTICE project (PRACTICE - Privacy-Preserving Computation in the Cloud, http://​practice-project.​eu), EU Grant Agreement No. 609611, Seventh Framework Programme. This work was also supported within the H2020-program under EU-grant agreement 644579 (ESCUDO-CLOUD).

Abstract

As machines get smarter, massive amounts of condition-based data from distributed sources become available. This data can be used to enhance maintenance management in several ways, such as by improving maintenance demand forecasting and spare parts and capacity planning. Regarding the former, machine learning techniques promise substantial benefits for forecasting the demand for spare parts over conventional techniques that are commonly used. While development and implementation of these techniques is difficult, practical applications pose another important challenge to providers of maintenance, repair, and overhaul services. Their customers are reluctant to provide access to sensitive real-time data because of privacy concerns, and even more so when their data is stored and processed in the cloud. In this paper we describe an application for privacy-preserving forecasting of demand for spare parts based on distributed condition data. It combines machine learning techniques—more specifically, decision-tree classification—with order-preserving encryption. The application is appropriate whenever planning for spare parts for the maintenance of condition-monitored machinery is needed, and it is particularly suitable for cloud-based implementation.

Bitte loggen Sie sich ein, um Zugang zu diesem Inhalt zu erhalten

Sie möchten Zugang zu diesem Inhalt erhalten? Dann informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 69.000 Bücher
  • über 500 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Umwelt
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Testen Sie jetzt 30 Tage kostenlos.

Journal of Business Economics

From January 2013, the Zeitschrift für Betriebswirtschaft (ZfB) is published in English under the title Journal of Business Economics (JBE). The Journal of Business Economics (JBE) aims at encouraging theoretical and applied research in the field of business economics and business administration, promoting the exchange of ideas between science and practice.

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 58.000 Bücher
  • über 300 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Testen Sie jetzt 30 Tage kostenlos.

Literatur
Über diesen Artikel

Weitere Artikel der Ausgabe 5/2018

Journal of Business Economics 5/2018 Zur Ausgabe

Editorial

Editorial

Premium Partner

    Bildnachweise