Skip to main content
Erschienen in: Cellulose 2/2017

19.11.2016 | Original Paper

Probing the structural chirality of crystalline cellulose with induced circular dichroism

verfasst von: Kevin Conley, M. A. Whitehead, Theo G. M. van de Ven

Erschienen in: Cellulose | Ausgabe 2/2017

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

There is mounting evidence of twists in the crystalline regions of cellulose, but direct imaging of the twist is hindered by the small crystal sizes in cellulose nanocrystals from wood and plant sources. Here the structural chirality of cellulose nanocrystals is determined experimentally using induced circular dichroism of optically inactive Congo red. Time Dependent Density Functional Theory B3LYP 6-31G calculations indicate right-handed twisted cellulose surfaces induce positive Cotton effects in adsorbed Congo red and left-handed surfaces induce negative Cotton effects. Consistent with directly observed twists, conventional wood cellulose nanocrystals are estimated to have a right-handed 800 nm per half-twist demonstrating the crystalline regions are not uniformly flat, but rather right-handed twisted crystalloids.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Literatur
Zurück zum Zitat Barone V, Cossi M (1998) Quantum calculation of molecular energies and energy gradients in solution by a conductor solvent model. J Phys Chem A 102(11):1995–2001CrossRef Barone V, Cossi M (1998) Quantum calculation of molecular energies and energy gradients in solution by a conductor solvent model. J Phys Chem A 102(11):1995–2001CrossRef
Zurück zum Zitat Conley K, Godbout L, Whitehead MA, van de Ven TGM (2016a) Origin of the twist of cellulosic materials. Carbohydr Polym 135:285–299CrossRef Conley K, Godbout L, Whitehead MA, van de Ven TGM (2016a) Origin of the twist of cellulosic materials. Carbohydr Polym 135:285–299CrossRef
Zurück zum Zitat Conley K, Whitehead MA, van de Ven TGM (2016b) Electronic structure calculations of twisted cellulose crystalloids. JSci Technol For Prod Process 5(4):54–61 Conley K, Whitehead MA, van de Ven TGM (2016b) Electronic structure calculations of twisted cellulose crystalloids. JSci Technol For Prod Process 5(4):54–61
Zurück zum Zitat Dong XM, Gray DG (1997) Induced circular dichroism of isotropic and magnetically-oriented chiral nematic suspensions of cellulose crystallites. Langmuir 13(11):3029–3034CrossRef Dong XM, Gray DG (1997) Induced circular dichroism of isotropic and magnetically-oriented chiral nematic suspensions of cellulose crystallites. Langmuir 13(11):3029–3034CrossRef
Zurück zum Zitat Edgar CD, Gray DG (2001) Induced circular dichroism of chiral nematic cellulose films. Cellulose 8(1):5–12CrossRef Edgar CD, Gray DG (2001) Induced circular dichroism of chiral nematic cellulose films. Cellulose 8(1):5–12CrossRef
Zurück zum Zitat Elazzouzi-Hafraoui S, Nishiyama Y, Putaux JL, Heux L, Dubreuil F, Rochas C (2008) The shape and size distribution of crystalline nanoparticles prepared by acid hydrolysis of native cellulose. Biomacromolecules 9(1):57–65CrossRef Elazzouzi-Hafraoui S, Nishiyama Y, Putaux JL, Heux L, Dubreuil F, Rochas C (2008) The shape and size distribution of crystalline nanoparticles prepared by acid hydrolysis of native cellulose. Biomacromolecules 9(1):57–65CrossRef
Zurück zum Zitat Engle AR, Purdie N, Hyatt JA (1994) Induced circular dichroism study of the aqueous solution complexation of cello-oligosaccharides and related polysaccharides with aromatic dyes. Carbohydr Res 265(2):181–195CrossRef Engle AR, Purdie N, Hyatt JA (1994) Induced circular dichroism study of the aqueous solution complexation of cello-oligosaccharides and related polysaccharides with aromatic dyes. Carbohydr Res 265(2):181–195CrossRef
Zurück zum Zitat Frisch M, Trucks G, Schlegel H, Scuseria G, Robb M, Cheeseman J, Scalmani G, Barone V, Mennucci B, Petersson G, Nakatsuji H, Caricato M, Li X, Hratchian H, Izmaylov A, Bloino J, Zheng G, Sonnenberg J, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery J Jr, Peralta J, Ogliaro F, Bearpark M, Heyd J, Brothers E, Kudin K, Staroverov V, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant J, Iyengar S, Tomasi J, Cossi M, Rega N, Millam J, Klene M, Knox J, Cross J, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann R, Yazyev O, Austin A, Cammi R, Pomelli C, Ochterski J, Martin R, Morokuma K, Zakrzewski V, Voth G, Salvador P, Dannenberg J, Dapprich S, Daniels A, Farkas Ö, Foresman J, Ortiz J, Cioslowski J, Fox D (2009) Gaussian 09 Revision A.02. Gaussian Inc., Wallingford Frisch M, Trucks G, Schlegel H, Scuseria G, Robb M, Cheeseman J, Scalmani G, Barone V, Mennucci B, Petersson G, Nakatsuji H, Caricato M, Li X, Hratchian H, Izmaylov A, Bloino J, Zheng G, Sonnenberg J, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery J Jr, Peralta J, Ogliaro F, Bearpark M, Heyd J, Brothers E, Kudin K, Staroverov V, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant J, Iyengar S, Tomasi J, Cossi M, Rega N, Millam J, Klene M, Knox J, Cross J, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann R, Yazyev O, Austin A, Cammi R, Pomelli C, Ochterski J, Martin R, Morokuma K, Zakrzewski V, Voth G, Salvador P, Dannenberg J, Dapprich S, Daniels A, Farkas Ö, Foresman J, Ortiz J, Cioslowski J, Fox D (2009) Gaussian 09 Revision A.02. Gaussian Inc., Wallingford
Zurück zum Zitat Hadden JA, French AD, Woods RJ (2013) Unraveling cellulose microfibrils: a twisted tale. Biopolymers 99(10):746–756CrossRef Hadden JA, French AD, Woods RJ (2013) Unraveling cellulose microfibrils: a twisted tale. Biopolymers 99(10):746–756CrossRef
Zurück zum Zitat Hadden JA, French AD, Woods RJ (2014) Effect of microfibril twisting on theoretical powder diffraction patterns of cellulose I\(\beta\). Cellulose 21(2):879–884CrossRef Hadden JA, French AD, Woods RJ (2014) Effect of microfibril twisting on theoretical powder diffraction patterns of cellulose I\(\beta\). Cellulose 21(2):879–884CrossRef
Zurück zum Zitat Hanley SJ, Revol JF, Godbout L, Gray DG (1997) Atomic force microscopy and transmission electron microscopy of cellulose from Micrasterias denticulata; evidence for a chiral helical microfibril twist. Cellulose 4(3):209–220CrossRef Hanley SJ, Revol JF, Godbout L, Gray DG (1997) Atomic force microscopy and transmission electron microscopy of cellulose from Micrasterias denticulata; evidence for a chiral helical microfibril twist. Cellulose 4(3):209–220CrossRef
Zurück zum Zitat Kaushik M, Basu K, Benoit C, Cirtiu CM, Vali H, Moores A (2015) Cellulose nanocrystals as chiral inducers: enantioselective catalysis and transmission electron microscopy 3D characterization. J Am Chem Soc 137(19):6124–6127CrossRef Kaushik M, Basu K, Benoit C, Cirtiu CM, Vali H, Moores A (2015) Cellulose nanocrystals as chiral inducers: enantioselective catalysis and transmission electron microscopy 3D characterization. J Am Chem Soc 137(19):6124–6127CrossRef
Zurück zum Zitat Lindner B, Petridis L, Langan P, Smith JC (2015) Determination of cellulose crystallinity from powder diffraction diagrams. Biopolymers 103(2):67–73CrossRef Lindner B, Petridis L, Langan P, Smith JC (2015) Determination of cellulose crystallinity from powder diffraction diagrams. Biopolymers 103(2):67–73CrossRef
Zurück zum Zitat Lukach A, Thérien-Aubin H, Querejeta-Fernández A, Pitch N, Chauve G, Méthot M, Bouchard J, Kumacheva E (2015) Coassembly of gold nanoparticles and cellulose nanocrystals in composite films. Langmuir 31(18):5033–5041CrossRef Lukach A, Thérien-Aubin H, Querejeta-Fernández A, Pitch N, Chauve G, Méthot M, Bouchard J, Kumacheva E (2015) Coassembly of gold nanoparticles and cellulose nanocrystals in composite films. Langmuir 31(18):5033–5041CrossRef
Zurück zum Zitat Matthews JF, Skopec CE, Mason PE, Zuccato P, Torget RW, Sugiyama J, Himmel ME, Brady JW (2006) Computer simulation studies of microcrystalline cellulose I\(\beta\). Carbohydr Res 341(1):138–152CrossRef Matthews JF, Skopec CE, Mason PE, Zuccato P, Torget RW, Sugiyama J, Himmel ME, Brady JW (2006) Computer simulation studies of microcrystalline cellulose I\(\beta\). Carbohydr Res 341(1):138–152CrossRef
Zurück zum Zitat Matthews JF, Beckham GT, Bergenstraåhle-Wohlert M, Brady JW, Himmel ME, Crowley MF (2012) Comparison of cellulose I\(\beta\) simulations with three carbohydrate force fields. J Chem Theory Comput 8(2):735–748CrossRef Matthews JF, Beckham GT, Bergenstraåhle-Wohlert M, Brady JW, Himmel ME, Crowley MF (2012) Comparison of cellulose I\(\beta\) simulations with three carbohydrate force fields. J Chem Theory Comput 8(2):735–748CrossRef
Zurück zum Zitat Mazeau K, Wyszomirski M (2012) Modelling of Congo red adsorption on the hydrophobic surface of cellulose using molecular dynamics. Cellulose 19(5):1495–1506CrossRef Mazeau K, Wyszomirski M (2012) Modelling of Congo red adsorption on the hydrophobic surface of cellulose using molecular dynamics. Cellulose 19(5):1495–1506CrossRef
Zurück zum Zitat Miyamoto I, Inamoto M, Matsui T, Saito M, Okajima K (1995) Studies on structure of cuprammonium cellulose I. A circular dichroism study on the dissolved state of cellulose in cuprammonium solution. Polym J 27(11):1113–1122CrossRef Miyamoto I, Inamoto M, Matsui T, Saito M, Okajima K (1995) Studies on structure of cuprammonium cellulose I. A circular dichroism study on the dissolved state of cellulose in cuprammonium solution. Polym J 27(11):1113–1122CrossRef
Zurück zum Zitat Miyamoto H, Yuguchi Y, Rein DM, Cohen Y, Ueda K, Yamane C (2016) Structure of cellulose/direct dye complex regenerated from supercritical water. Cellulose 23(3):2099–2115CrossRef Miyamoto H, Yuguchi Y, Rein DM, Cohen Y, Ueda K, Yamane C (2016) Structure of cellulose/direct dye complex regenerated from supercritical water. Cellulose 23(3):2099–2115CrossRef
Zurück zum Zitat Mukherjee S, Woods H (1953) X-ray and electron microscope studies of the degradation of cellulose by sulphuric acid. Biochim Biophys Acta 10:499–511CrossRef Mukherjee S, Woods H (1953) X-ray and electron microscope studies of the degradation of cellulose by sulphuric acid. Biochim Biophys Acta 10:499–511CrossRef
Zurück zum Zitat Nishiyama Y, Langan P, Chanzy H (2002) Crystal structure and hydrogen-bonding system in cellulose I\(\beta\) from synchrotron X-ray and neutron fiber diffraction. J Am Chem Soc 124(31):9074–9082CrossRef Nishiyama Y, Langan P, Chanzy H (2002) Crystal structure and hydrogen-bonding system in cellulose I\(\beta\) from synchrotron X-ray and neutron fiber diffraction. J Am Chem Soc 124(31):9074–9082CrossRef
Zurück zum Zitat Nishiyama Y, Johnson GP, French AD (2012) Diffraction from nonperiodic models of cellulose crystals. Cellulose 19(2):319–336CrossRef Nishiyama Y, Johnson GP, French AD (2012) Diffraction from nonperiodic models of cellulose crystals. Cellulose 19(2):319–336CrossRef
Zurück zum Zitat Revol JF, Bradford H, Giasson J, Marchessault R, Gray D (1992) Helicoidal self-ordering of cellulose microfibrils in aqueous suspension. Int J Biol Macromol 14(3):170–172CrossRef Revol JF, Bradford H, Giasson J, Marchessault R, Gray D (1992) Helicoidal self-ordering of cellulose microfibrils in aqueous suspension. Int J Biol Macromol 14(3):170–172CrossRef
Zurück zum Zitat Scherrer P (1918) Bestimmung der Grösse und der inneren Struktur von Kolloidteilchen mittels Röntgenstrahlen. Nachr Ges Wiss Göttingen Math Phys Kl 1918:98–100 Scherrer P (1918) Bestimmung der Grösse und der inneren Struktur von Kolloidteilchen mittels Röntgenstrahlen. Nachr Ges Wiss Göttingen Math Phys Kl 1918:98–100
Zurück zum Zitat Schutz C, Agthe M, Fall AB, Gordeyeva K, Guccini V, Salajková M, Plivelic TS, Lagerwall JP, Salazar-Alvarez G, Bergstrom L (2015) Rod packing in chiral nematic cellulose nanocrystal dispersions studied by small-angle X-ray scattering and laser diffraction. Langmuir 31(23):6507–6513CrossRef Schutz C, Agthe M, Fall AB, Gordeyeva K, Guccini V, Salajková M, Plivelic TS, Lagerwall JP, Salazar-Alvarez G, Bergstrom L (2015) Rod packing in chiral nematic cellulose nanocrystal dispersions studied by small-angle X-ray scattering and laser diffraction. Langmuir 31(23):6507–6513CrossRef
Zurück zum Zitat Shopsowitz KE, Qi H, Hamad WY, MacLachlan MJ (2010) Free-standing mesoporous silica films with tunable chiral nematic structures. Nature 468(7322):422–425CrossRef Shopsowitz KE, Qi H, Hamad WY, MacLachlan MJ (2010) Free-standing mesoporous silica films with tunable chiral nematic structures. Nature 468(7322):422–425CrossRef
Zurück zum Zitat Stephens PJ, Harada N (2010) ECD cotton effect approximated by the Gaussian curve and other methods. Chirality 22(2):229–233 Stephens PJ, Harada N (2010) ECD cotton effect approximated by the Gaussian curve and other methods. Chirality 22(2):229–233
Zurück zum Zitat Straley JP (1976) Theory of piezoelectricity in nematic liquid crystals, and of the cholesteric ordering. Phys Rev A 14(5):1835–1841CrossRef Straley JP (1976) Theory of piezoelectricity in nematic liquid crystals, and of the cholesteric ordering. Phys Rev A 14(5):1835–1841CrossRef
Zurück zum Zitat Usov I, Nyström G, Adamcik J, Handschin S, Schütz C, Fall A, Bergström L, Mezzenga R (2015) Understanding nanocellulose chirality and structure-properties relationship at the single fibril level. Nat Commun 6:7564CrossRef Usov I, Nyström G, Adamcik J, Handschin S, Schütz C, Fall A, Bergström L, Mezzenga R (2015) Understanding nanocellulose chirality and structure-properties relationship at the single fibril level. Nat Commun 6:7564CrossRef
Zurück zum Zitat Woodcock S, Henrissat B, Sugiyama J (1995) Docking of Congo red to the surface of crystalline cellulose using molecular mechanics. Biopolymers 36(2):201–210CrossRef Woodcock S, Henrissat B, Sugiyama J (1995) Docking of Congo red to the surface of crystalline cellulose using molecular mechanics. Biopolymers 36(2):201–210CrossRef
Zurück zum Zitat Zhang X, Wang L, Dong S, Zhang X, Wu Q, Zhao L, Shi Y (2016) Nanocellulose 3, 5-dimethylphenylcarbamate derivative coated chiral stationary phase: Preparation and enantioseparation performance. Chirality 28(5):376–381CrossRef Zhang X, Wang L, Dong S, Zhang X, Wu Q, Zhao L, Shi Y (2016) Nanocellulose 3, 5-dimethylphenylcarbamate derivative coated chiral stationary phase: Preparation and enantioseparation performance. Chirality 28(5):376–381CrossRef
Metadaten
Titel
Probing the structural chirality of crystalline cellulose with induced circular dichroism
verfasst von
Kevin Conley
M. A. Whitehead
Theo G. M. van de Ven
Publikationsdatum
19.11.2016
Verlag
Springer Netherlands
Erschienen in
Cellulose / Ausgabe 2/2017
Print ISSN: 0969-0239
Elektronische ISSN: 1572-882X
DOI
https://doi.org/10.1007/s10570-016-1130-8

Weitere Artikel der Ausgabe 2/2017

Cellulose 2/2017 Zur Ausgabe