Skip to main content
Erschienen in: Thermal Engineering 10/2019

01.10.2019 | WATER TREATMENT AND WATER CHEMISTRY

Problems of Ion-Exchange and Membrane Water Treatment Technologies in Power Engineering

verfasst von: B. M. Larin, E. B. Yurchevskii

Erschienen in: Thermal Engineering | Ausgabe 10/2019

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The demineralization of clarified water is carried out in TPPs, NPPs, and combined-cycle boiler houses in Russia, as a rule, using a chemical or membrane method. Conventional chemical demineralization prevails, and the number of reverse osmosis plants is constantly increasing. When choosing the demineralization technology, the main criteria are economic. When comparing the reduced costs for water demineralization, chemical ion exchange methods take precedence over others for low-mineralized waters prevailing in the central and northern parts of Russia. For medium-mineralized waters, the economic indicators of ion-exchange and reverse osmosis demineralization are close. In terms of environmental performance, membrane water treatment technologies have significant advantages over the ion-exchange method; however, they require more thorough water pretreatment and are characterized by an increased sewage flow rate of up to 40% of the capacity. The introduction of more advanced technologies on conventional water treatment plants with parallel-flow filters reduces water consumption for plant demand, ion exchangers and reagents, primarily acids, and alkalis. This article uses the results of a survey of water treatment plants at some TPPs. Technical and economic indicators are given for groups of power plants that are grouped according to the same principle of water treatment technology. It is concluded that conventional chemical water demineralization plants with straight-flow filters have not exhausted their capabilities. Counter-current ionization technologies can successfully compete with conventional installations, provided domestic enterprises master the production of complete filters, including the automatic control system. Membrane water demineralization technologies can be effectively used in the energy sector for the development of industrial design, application, and process flow tests’ regulations for reverse osmosis plants.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat L. M. Zhivilova, G. V. Efimov, and V. V. Maksimov, Automation of Water Treatment Units of Thermal Power Plants (Energiya, Moscow, 1976) [in Russian]. L. M. Zhivilova, G. V. Efimov, and V. V. Maksimov, Automation of Water Treatment Units of Thermal Power Plants (Energiya, Moscow, 1976) [in Russian].
2.
Zurück zum Zitat A. P. Mamet, V. A. Taratuta, and E. B. Yurchevskii, “The principles of creating low-waste water treatment units,” Teploenergetika, No. 7, 2–5 (1992). A. P. Mamet, V. A. Taratuta, and E. B. Yurchevskii, “The principles of creating low-waste water treatment units,” Teploenergetika, No. 7, 2–5 (1992).
3.
Zurück zum Zitat Rules of Technical Operation of Power Plants and Networks of Russian Federation (ORGRES, Moscow, 2003) [in Russian]. Rules of Technical Operation of Power Plants and Networks of Russian Federation (ORGRES, Moscow, 2003) [in Russian].
4.
Zurück zum Zitat Main Requirements for the Use of Ionites in Water Treatment Units of Thermal Power Plants (Vseross. Teplotekh. Inst., Moscow, 2005) [in Russian]. Main Requirements for the Use of Ionites in Water Treatment Units of Thermal Power Plants (Vseross. Teplotekh. Inst., Moscow, 2005) [in Russian].
5.
Zurück zum Zitat B. M. Larin, A. V. Kolegov, and A. B. Larin, Measurements of Electrical Conductivity and pH in Monitoring Systems of the Water Mode of TPPs (Ivanov. Gos. Energ. Univ., Ivanovo, 2014) [in Russian]. B. M. Larin, A. V. Kolegov, and A. B. Larin, Measurements of Electrical Conductivity and pH in Monitoring Systems of the Water Mode of TPPs (Ivanov. Gos. Energ. Univ., Ivanovo, 2014) [in Russian].
6.
Zurück zum Zitat E. B. Yurchevskii and B. M. Larin, “Development, study, and introduction of water-treatment equipment with improved environmental characteristics,” Therm. Eng. 52, 532–538 (2005). E. B. Yurchevskii and B. M. Larin, “Development, study, and introduction of water-treatment equipment with improved environmental characteristics,” Therm. Eng. 52, 532–538 (2005).
7.
Zurück zum Zitat T. V. Alekseeva and B. S. Fedoseev, “Perfecting the ion exchange technology based on countercurrent technology,” Energetik, No. 7, 17–19 (2001). T. V. Alekseeva and B. S. Fedoseev, “Perfecting the ion exchange technology based on countercurrent technology,” Energetik, No. 7, 17–19 (2001).
8.
Zurück zum Zitat A. A. Grishin, “Some problems of ion-exchange water treatment technology at thermal power plants,” Energosberezhenie Vodopodgot., No. 4, 13–17 (2002). A. A. Grishin, “Some problems of ion-exchange water treatment technology at thermal power plants,” Energosberezhenie Vodopodgot., No. 4, 13–17 (2002).
9.
Zurück zum Zitat A. F. Panteleev, B. E. Ryabchikov, A. V. Zhadan, and O. V. Khoruzhii, “Design solutions for water treatment plants constructed on the basis of membrane technologies,” Therm. Eng. 59, 517–523 (2012).CrossRef A. F. Panteleev, B. E. Ryabchikov, A. V. Zhadan, and O. V. Khoruzhii, “Design solutions for water treatment plants constructed on the basis of membrane technologies,” Therm. Eng. 59, 517–523 (2012).CrossRef
10.
Zurück zum Zitat E. V. Barochkin, M. Yu. Oparin, A. A. Il’ichev, and A. B. Larin, “An experience gained in servicing a computerized plant for ion-exchange softening of natural water,” Therm. Eng. 52, 758–763 (2005). E. V. Barochkin, M. Yu. Oparin, A. A. Il’ichev, and A. B. Larin, “An experience gained in servicing a computerized plant for ion-exchange softening of natural water,” Therm. Eng. 52, 758–763 (2005).
11.
Zurück zum Zitat STO 70238424.27.100.013-2009. Water Treatment Units and Water Chemistry of Thermal Power Plants. The Condition of Creation. Standards and Requirements (INVEL, Moscow, 2009). STO 70238424.27.100.013-2009. Water Treatment Units and Water Chemistry of Thermal Power Plants. The Condition of Creation. Standards and Requirements (INVEL, Moscow, 2009).
12.
Zurück zum Zitat A. A. Panteleev, V. F. Ochkov, K. A. Orlov, and S. S. Gavrilenko, “Approaches to the design and optimization of water treatment units based on integrated membrane technologies,” Energosberezhenie Vodopodgot., No. 6, 14–18 (2013). A. A. Panteleev, V. F. Ochkov, K. A. Orlov, and S. S. Gavrilenko, “Approaches to the design and optimization of water treatment units based on integrated membrane technologies,” Energosberezhenie Vodopodgot., No. 6, 14–18 (2013).
13.
Zurück zum Zitat B. M. Larin, E. B. Yurchevskii, V. V. Gost’kov, A. B. Larin, and E. N. Bushuev, Water Treatment at Thermal and Nuclear Power Plants (Ivanov. Gos. Energ. Univ., Ivanovo, 2010) [in Russian]. B. M. Larin, E. B. Yurchevskii, V. V. Gost’kov, A. B. Larin, and E. N. Bushuev, Water Treatment at Thermal and Nuclear Power Plants (Ivanov. Gos. Energ. Univ., Ivanovo, 2010) [in Russian].
15.
Zurück zum Zitat A. A. Panteleev, V. V. Bobinkin, S. Yu. Larionov, B. B. Ryabchikov, V. B. Smirnov, and D. A. Shapovalov, “Methodological approaches to conducting pilot and proof tests on reverse-osmosis systems: Results of comparative studies,” Therm. Eng. 64, 781–786 (2017). https://doi.org/10.1134/S0040601517100093 CrossRef A. A. Panteleev, V. V. Bobinkin, S. Yu. Larionov, B. B. Ryabchikov, V. B. Smirnov, and D. A. Shapovalov, “Methodological approaches to conducting pilot and proof tests on reverse-osmosis systems: Results of comparative studies,” Therm. Eng. 64, 781–786 (2017). https://​doi.​org/​10.​1134/​S004060151710009​3 CrossRef
16.
Zurück zum Zitat E. B. Yurchevskii and A. V. Yakovlev, “The experience of VNIIAM in study, development and implementation of countercurrent filters,” Energosberezhenie Vodopodgot., No. 5, 3–8 (2004). E. B. Yurchevskii and A. V. Yakovlev, “The experience of VNIIAM in study, development and implementation of countercurrent filters,” Energosberezhenie Vodopodgot., No. 5, 3–8 (2004).
Metadaten
Titel
Problems of Ion-Exchange and Membrane Water Treatment Technologies in Power Engineering
verfasst von
B. M. Larin
E. B. Yurchevskii
Publikationsdatum
01.10.2019
Verlag
Pleiades Publishing
Erschienen in
Thermal Engineering / Ausgabe 10/2019
Print ISSN: 0040-6015
Elektronische ISSN: 1555-6301
DOI
https://doi.org/10.1134/S0040601519100033

Weitere Artikel der Ausgabe 10/2019

Thermal Engineering 10/2019 Zur Ausgabe

    Premium Partner